

IPX SPOOFING PROJECT

Matthew Gream 23rd
January 1995

Introduction

This document refers to the modifications carried out to the LANPACK software in order to provide IPX
spoofing services. It details what was carried out, and why it was carried out. The "Overview" section
explains the operation of LANPACK and the particular problem with it's logical solution. The "Solution
Implementation" section describes the current solution, not taking into account intermediate "solutions" that
did not work. The following section "Problems, Limitations and Notes" does go into deal about existing
problems, limitations in, and miscellaneous information about, what was finally achieved.

Overview

The LANPACK software operates on a standard PC fitted with the Jtec J2050. It's purpose is to act as an
interface between an application running on the client PC and the 12050. To the client application, the
software looks, and acts, like a standard packet driver. The application hands down Ethernet frames, in an
ODI fragmented format, and LANP ACK shuttles these to the 12050 for transport across the link. LANP
ACK also accepts Ethernet frames from the J2050 (which originated from the remote LAN the link is
connected to) and passes these up to the application through the packet driver interface.

LANPACK also takes care of establishing and tearing down calls. In doing this, it can be set to connect to a
particular ISDN peer "on demand", that is, when it receives a packet destined for that particular peer. It can
equally operate with a "permanent" link in place. It is with the "on demand" configuration that problems
occur.

If Novell is being used across the link, there are a few problems that cause unnecessary LAN calls to be
made. The first problem, the trivial one, manifests itself by way of Novell's "serialisation" packets. These
are periodically broadcast in order to enforce Novell's licensing agreements. They serve no other purpose,
and would trigger call establishment when broadcast; fortunately they are infrequent. The second problem,
which is more of a real concern, involves Novell's Service Requests (using the Netware Core Protocols, or
NCP).

A Novell client can have network directories. These are directories that are not physically attached to the
client, but are to the server. During the lifetime of a client<->server association (through all phases, whether
a user is logged in or not), these network directories may be created, deleted or have their path names
changed. The client maintains a set of "directory handles" that it associates with each particular server it is
connected to. These "directory handles" map to both drive letters on the local machine, eg. A: ... Z:, and to
drive letters and paths on the remote machine (eg. ADMIN\SYS:LOGIN). The server also maintains a
similar map.

The client doesn't cache the drive and path names (on a server) associated with a directory handle, therefore
whenever it needs to determine what drive and path a handle maps to, it must ask the particular server to
provide the information. This also means that when the client wants to change a path name, it must ask the
corresponding server to do so. It can also add or delete entire network drive (ie. directory handle) references
it has with a server. The requests to provide the current directory path for a directory handle are called "Get
Directory Path" (GDP) requests. Even with a standard DOS prompt sitting "within" a network drive,
whenever return is hit and a new prompt (but looking the same) is displayed, a GDP has been executed.

A problem ...

The problem that occurs is that when a user is not using network resources but still logged into a server and
for any reason a GDP is required, it will cause, for an "on demand" link, a call to be made. A prime example
of this is when an application on a local drive is being used, and a fIle requestor box is

IPXSPOOF.DOC 1 mgream--24/0 1/95-- VI

presented. The file requestor box contains network directories that can be selected if desired. When the file
requestor was being constructed, it required a list of all drives on the client, and hence a series of GDP
requests were executed. This requires a call to be made, even though the user hasn't selected (yet) to use
network resources. Effectively this means that the "on demand" operation, at least with Novell, is severely
limited

Corresponding to the GDP requests are "End of Job" (EOJ) requests that using follow each and every GDP.
They are also sent when, for example, a user changes from a network drive to a local drive. In the same way
as GDP's, these cause unnecessary calls to be made.

... and it's solution.

To these problems, there are solutions. In the case of serialisation packets, they can be "dropped" and not
passed across the link. There is no harm at all in doing this.

In the case of the GDP requests, we can maintain a local database (cache) of mapping's between directory
handles and path names for each particular client<->server association. We would need to trap these GDP
requests, and related requests that add or delete mapping's altogether, to update and keep the database in
sync. Then, when the link is down, we would "spoof' a reply to the request using information from our
cache, preventing unnecessary calls from being made. Of course, if the database didn't contain the
information, then a call would need to be made and the reply from the server would need to be captured to
update the information.

By the same token, we can also catch EOJ requests and spoof positive confirmations back to the client.
What we would need to do when the link is brought "up" is to forward these end of job requests to the
server so that it does finally receive them.

Solution Implementation

The framework and interface with LANPACK

The first requirement is to pick out packets that are of interest to us. Any packets that aren't of interest are
allowed to continue on their natural path; just as if no modifications to LANPACK were made. There are
three interfaces with LANPACK, ignoring several other LANPACK modifications for the time being.

1. In LANPACK.C/ProcessTData:Ind() incoming fragments of frames from the 12050 are reassembled.
When an entire Ethernet frame has been reconstructed, the application is notified by way of a software
callback that the frame is ready to be retrieved. Before notifying the application, the frame is passed
through IPX_MAIN.C/ipxs-pkt_from_link () which returns an indication of whether the frame should
be dropped or whether it should be sent. In the former case, the notify is suppressed and hence the
application doesn't pick it up. It will be "overwritten" by a new packet from the link.

2. LANISR.C/TransmitPacket () is the function that accepts ODI format frames from the application and
sends them off to the J2050. It contains necessary logic to determine the state of the link and whether or
not a call needs to be made to establish the link. Before the frame reaches any of this logic, it is passed
through IPX_MAIN.C/ipxs-pkt_to_link() which also returns an indication of whether the frame should
be dropped or sent onwards. If it is to be dropped, then the function returns an immediate success.

3. Initialisation of the entire IPX spoofing modifications is carried out from within
 LANPACK.C/LANPacket_Task(} by a call to IPX_MAIN.C/ipxs_init ().

The necessary external information for LANP ACK is carried in IPXSPOOF. H. All new functions for the
IPX spoofing module are contained within the files with an IPX prefix, except for an extra two functions
and other slight modifications to the original LANP ACK source files. This will be described subsequently.

Logical model of the IPXSPOOF software

IPXSPOOF.DOC 2 mgream--24/0 1/95-- VI

The following is a "basic" overview of how the IPX software is organised and structured:

Frames to the link

These are first examined to see whether or not they are frames we are interested in. This means
only looking at Ethernet frames that contain IPX packets; all others are passed on. The only IPX
packets we are interested in are 'Serialization' packets, which are dropped, and those containing
NCP requests. Only the following NCP requests are examined:

Deallocate Directory Handle -- The mapping, if it exists in the database, for this client<->server
association with this directory handle to a path name is deleted from the database. This is done
because the mapping will not longer be valid after the directory handle has been deallocated. The
original request is allowed to continue on to the server, establishing a call if required.

Set Directory Handle -- This too is deleted, as with "Deallocate Directory Handle". This is done
because the request is to change the contents of what is in the database (ie. the request sends a new
relative path name for a particular directory handle). Our strategy is to not attempt to make the
modifications ourselves, but clear the entry and allow a subsequent "Get Directory Path" to refill
the database. This request is also allowed to continue on to the server.

Logout -- When this occurs, all entries in the database for this particular client<->server
association become invalid. The request is allowed to continue on to the server.

End of Job -- If the link is currently connected, then this request is allowed to continue on to the
server without any further processing. However, if the link is not connected then a "spoofed" reply
is created and returned to the application. Thus, the application "thinks" the server has accepted
and responded to the request. What happens next is that the software records the fact that a request
on a particular client<->server has been spoofed, and takes note of the sequence number of the
request. The original request is not allowed to continue on to the server.

Get Directory Path -- If the link is currently connected, then the first thing that occurs is that any
entry that exists in the database for this client<->server association and directory handle is deleted.
A "hook" is put in that will capture the NCP reply for this request as it comes back from the server,
and the request is allowed to continue on to the server. The reply, when trapped, will contain the
current path name information, and will be used to update the database. This ensures that the
database always contains the newest information; note that a negative reply won't be added to the
database, if it occurs. If the link is not connected and the database doesn't contain a corresponding
entry, then the request is also allowed to continue on to the server, again with the same "hook"
mechanism put into place. Finally, if the link is not connected and the database does contain an
entry, a spoofed reply is generated and returned back to the application. The fact that this sequence
number was not sent is recorded, as explained in the case of an 'End of Job'. The request is not
allowed to continue on to the server, in that case.

Frames from the link

The only frames of interest that come from the link are NCP replies. In particular, the replies to a
"Get Directory Path" request are usually required to be used to fill in an entry in the database. The
software maintains a list of replies that it needs to examine, and each NCP reply is examined to
determine whether or not it matches an entry in the list. In the case of a "Get Directory Path'"
reply, the database entry is only updated if the reply contains a positive indication of the request (a
failure could occur if an incorrect directory handle was specified). Note that the reply contains the
actual path name for the directory handle that was originally sent in the request. These replies are
allowed to continue on to the client.

There is an additional detail not yet covered, that is the what occurs when the link becomes active and the
LANPACK software has a record of the sequence numbers of spoofed request/replies for a particular
client<->server association. Basically, the problem is that each NCP request/reply has a sequence number
that increases linearly modulo 256. The server will silently ignore any incoming requests that are out of
order (ie. not equal to the next sequence number that is expected), which may occur if a request is lost

IPXSPOOF.DOC 3 mgream--24/01/95--"1

and a second request arrives. The client's strategy is to time out and resend the outstanding requests. This is
a valid mode of operation, as commands do necessarily rely on the successful operation of previous
commands.

When client to server requests are spoofed, the client receives a reply for that request, and hence a
confirmation that the sequence number associated with that request was accepted, but the server never
"sees" that sequence number. When the link becomes active, and client requests are passed to the server
with or without action by this software, they will contain sequence numbers higher than that the server
expects. Again, this is because the server has never seen those intermediate sequence numbers, we "faked"
them. The result is the client goes through a series of timeouts and the only means of recovery is to abort the
connection. This is fairly nasty.

There were four strategies that could have rectified this situation, they are documented in an associated file
"PROBLEMS.DOC". Only one strategy was anywhere near practical, and what it involved was
keeping a note of the missing sequence numbers while the link is not connected --- as noted in the operation
of the software above. When the link is connected, it is required to transmit a number of "dummy" requests
to the server so that it will "see" the missing sequence numbers. This must occur before the client in the
association times out it's sending of the next request (ie. the one that has a sequence number starting just
after the gap to be filled in). This is where the problem lies, because with a possible maximum of 255
"dummy" packets to send, meeting this timeout bound isn't likely. In addition, should any of these be lost, it
would not be possible to recover.

These "dummy" requests are sent when the first request destined on a particular client<->server is detected
by the software. Because if the out of sequence mechanism. the software cannot send the next "dummy"
request until it has received a reply on the current request. Hence, to pace itself, it traps the reply for the
request and then transmits the next request. This continues until it has "filled in the gap".

That completes a, largely but not strictly, overview of how the software operates without explaining
particular implementation oddities. For a more complete look at the software, each module will be
examined in turn.

IPX spoofing software module breakdown

IPX_MAIN. C

This module provides functions that are called from within the LANP ACK software, namely:

ipxs_pkt_to_link() -- The frames passed into here are not "contiguous", they are in the fragmented
(001) format. A contiguous frame is extracted but only up to a certain length. The reason for this is
that frames we are interested in will never exceed a certain length, hence there is no reason for
copying, or even considering for that matter, frames that are "too long". Following this, the
locations of the sub frames are determined (Ethernet, IPX, NCP) and if the NCP packet is a request
it is handed off to ipxs_proc_ncp_request () to be further examined. If the IPX packet is a
serialisation packet, it is dropped. Anything else is allowed to pass on without alteration. Note that
there are hooks in there for setup_sig_complete () if the action is to drop a frame This is a function
that causes a "packet transmitted successfully" interrupt to be made to the application. It is required
because the application must be notified of the transmit status of every frame it sends. When a
packet is dropped, we still want the application to think it was sent successfully, hence the
"spoofing" of a transmit complete.

ipxs_pkt_from_link() -- Frames coming from the link destined for the application are passed in
here. As with the previous function, the location of the sub frames is determined and only those
that are NCP replies are handed off to ipxs_proc_ncp_reply () for further action. Everything else is
allowed to pass on without alteration.

ipxs_init () -- Performs initialisation of anything within the IPX spoofing software that requires
so.

IPX_PROC.C

IPXSPOOF.DOC 4 mgream--24/01l95--VI

This module provides the upper level functions that examine and act upon the contents of NCP
requests and replies. There are two functions of importance:

ipxs_proc_ncp_request () _ Frames containing NCP requests are passed into here. The type of
request must be a "Set Directory Handle", "Deallocate Directory Handle", "Get Directory Path",
"Logout" or "End of Job" or the function will exit allowing the frame to travel onwards unaltered.
The source and destination addresses from the IPX packet are used as "keys" in the internal
databases. In addition, the database of directory paths uses the directory handle extracted from the
NCP request as another key, and the database of confirmations uses the uses the sequence number
and connection number from the NCP request as it's other key. These are extracted before further
processing.

If the request is a "Set Directory Handle" or "Deallocate Directory Handle", then the
corresponding entry in the directory path database is removed if it exists. Note that if a
confirmation has not yet been received for this entry, then it is also cleared out from the
confirmation database. The request is allowed to continue onwards.

If the request is a "Get Directory Path", then the corresponding entry is looked up in the
directory database, if the link is currently IDLE. If the entry exists, then a spoofed reply is
generated and sent back to the application, and the previously mentioned "unsent
sequence numbers" database is updated. The request is then dropped. However, if the link
isn't IDLE or an entry wasn't found in the database, then a blank entry is allocated in the
directory path database, and a hook is put into the confirmation database to trap the
returned reply. This request is then allowed to continue onwards.

If the request is an "End of Job" and the link is IDLE then a spoofed reply is generated
and sent back to the application. The "unsent sequence numbers" database is updated to
indicate that another spoofed packet has been sent, and this request is then dropped. IF the
link isn't IDLE then the request is passed on untouched.

If the request is a "Logout", then all matching entries in the directory path database are
removed corresponding to the address pair for the association. This erases all directory
handle mapping's for that particular session, noting also that any outstanding
confirmations connected to these entries are also removed.

ipxs_proc_ncp_reply () -- Here the incoming frames have their respective key information
extracted, as just noted with respect to the processing of requests. This key information is used to
locate an entry in the confirmation database, and if none exists then the function returns allowing
the frame to continue on without modification. If a match is located, then action is performed
according to the type of confirmation hook that was constructed. Note that the confirmation entry
is removed from the database before anything else is done, because now it is obsolete.

If the hook is of type "CF _E_ADD", then the reply is a response to a "Get Directory Path". If the
reply contains a positive confirmation, then the new path can be copied into it's respective position
in the directory path database. If the confirmation is negative, then the database entry is removed.
In both cases, the frame is then allowed to continue on without modification.

IPX_REPL.C

There are two main routines in this module which provides for the construction of spoofed replies.
The first, reply _gdp () constructs a reply to a "Get Directory Path" request and reply_eoj ()
constructs a reply to an "End of Job" request. Both of these then forward (or spoof) the reply back
to the application.

There are a few caveats. Firstly, IPX checksums are not computed. For the moment this is OK as it
is possible, and usual, for IPX checksums to be turned off. But it is definitely possible for this
product to be deployed in an environment that does use checksums. Something should be done
about this at a later date. Secondly, the FCS field of the Ethernet frame is not computed, but this

IPXSPOOF.DOC 5 mgream--24/0 1/95-- VI

is not a problem because the LANP ACK software strips this off before handing the frame up to
the application.

The way frames are "sent back" to the application is also worth mentioning. What occurs is that the
main LANP ACK database contains an entry to hold a spoofed frame, and this is where it is
constructed. The module indicates that a spoofed frame is ready to be sent by sending a
T_DATA_IND back to LANPACK, ie. itself. LANPACK will then, as part of it's normal
processing, pick out this message and proceed to pass the spoofed frame up to the application. The
reason the frame isn't directly sent to the application is because at the time it has to be sent, the
software is in a software interrupt from the application. It would be unwise to directly send it,
which involves making a call back to the application, while already in a call from the application.

In addition, there is a function setup_sig_complete () that is responsible for faking a
T_DATA_CON. The J2050 indicates the fact that a frame has been successfully transmitted by
sending a T_DATA_CON to LANPACK, which then "calls" the application to inform it of a
successful transmit When dropping frames, because of an IPX spoofing requirement, it is still
required that the application be informed that a successful transmit occurred. Therefore, this
function provides that It is called from XPX_MAXN. C whenever a frame is going to be dropped.

IPX_GDP.C

This module acts as the means by which the IPX spoofing software keeps track of missing
sequence numbers corresponding to spoofed replies. Any time a reply is spoofed, the update
function is called. It takes care of keeping track of a table indicating the range of sequence numbers
that have been "missed" on a particular association because of spoofing. The function also takes a
copy of the first frame it is passed and modifies it to act as a later "dummy" request

When the link becomes active and a request is seen on an association that had replies spoofed
during the link idle period, then the strategy is to send a number of "dummy" requests to make up
for the sequence number space that the server "never saw". It sends the fIrst "dummy" request and
then puts in a hook to catch the returned reply from the server. When it gets this reply it sends the
next "dummy" and this process continues until all the "missing" sequence numbers have been
transmitted.

There is currently a problem with this strategy, this is detailed further in the problems and
limitations section (subsequently).

IPX_DB.C

This module implements the directory path database and provides all the necessary access
functions. There is also a corresponding header file with element definitions and prototypes. The
database has two keys, the first being a "directory handle" and the second being a part of addresses
for a particular association (ie. the IPX net and node addresses for both source and destination).
Entries can be added or removed from the table of active entries, but note that there is a fixed
maximum size for the table; this is because all memory must be preallocated. The active table is
implemented using hashing for fast(er) access. Note also that timestamps are used on each added
entry so that "old" entries can be easily located and removed when the table is full. Each entry has
space to contain a directory path, and a pointer to an entry in the confirmation database.

IPX_CF.C

This module, the confirmation database, is very similar to the directory path database; except that
in this instance what is being stored are hooks to match and act upon NCP replies. The keys for the
database are a sequence number and connection number along with the address pair for a particular
association. Each entry stores an identifier that indicates what action is to be taken upon reception
of the confirmation and includes a pointer to an entry in the directory path database, should there
be one to match up to.

IPXSPOOF.DOC 6 mgream--24/0 1/95-- VI

IPX_DEBU. C

Contains debug reporting routines that use the Report interface provided within JEXEC. Not very
important in the scheme of things.

IPXSPOOF.B

This header file acts as the external interface to the IPX spoofing software. It contains the
necessary prototypes and definitions needed by the rest of the LANP ACK software.

IPX_PRIV.B

This header fIle contains prototypes, definitions and details specific only to the IPX spoofing
modules themselves, it does not have any external scope.

Other modifications to LANPACK software

There were a few minor modifications to the LANP ACK software itself to support the IPX spoofing
software. First, several additions were made to the database so it could hold a spoofed frame, ready to be
sent, the length of the frame and an indication that the frame is currently being "processed". In addition,
when sending "dummy" requests after a link has become active, the J2050 will providing transmit complete
indications (T_DATA_CON) that should not be passed on to the application. Hence, a counter has been
instrumented that keeps track of the number ofT_DATA_CON's that should be ignored.

Modifications were made the following:

LANCFG.C/:InitialiseDatabase () -- Initialise the new database entries to default values.
LAN:ISR.C/TransmitPacket () -- This is where ipxs_pkt_to_link() is called from and its return
indicates whether or not the frame should continue on to be transmitted, or should be dropped.
LAN:ISR.C/PollPacketResult () -- This is called when the application wants to receive a frame it
knows is waiting; therefore modifications are in place to provide the spoofed frame if it is waiting.
LANRTN.C/ResetCallDatabase() -- Additions to support the suppression of T_DATA_CONs.
LANPACK.C/LANPacket_Task() - Calls ipxs_init () to start up the IPX spoofing additions.
Incoming T_DATA_IND's are checked to see whether the message was generated locally, and
hence is a spoof. Incoming T _DATA_CON's are not processed if any suppression of them is
required.
LANPACK.C/PrintStatus () -- Additions to show values of new variables in the database.
LANPACK.C/ProcessTData:Ind() - Calls ipxs_pkt_from_link() and indicates, by return, whether
or not the frame should be dropped or allowed to progress to the application.
LANPACK.C/Process:IpxSpoof () -- New function to hand up spoofed frame to application.
LANPACK.C/ProcessSpoofCon() - New function to signal a transmit complete (to application)
regardless of current link state.
LANPACK.C/ProcessOpenFailure() -- Additions to suppress indication of successful transmit
complete if suppression of T_DA T A_CONs is still required.

Problems, Limitations and Notes

There are a number of items that are best presented by describing them in point form:

1. The keys for the databases must include both the source and destination IPX net and node addresses as
keys, this is because it is possible to have multiple clients talking to multiple servers. It looks as though,
and it's a safe assumption that, directory handles are unique only within the domain of a particular
client/server; especially as it is the server that allocates the handle when the server has no

IPXSPOOF.DOC 7 mgream-- 24/0 1/95-- V
1

idea of other servers the client is communicating with. Note that port numbers do not bear any
significance, at least in the context we are concerned with.

2. As it stands, there is (what I would consider) significant overhead in terms of having to match addresses
in the databases. An optimal way to rewrite this would be to tree the database entries down from a
small address table, this would minimise the number of address comparisons. There are a few other
ways to achieve the same goal though. This is a fairly minor concern, and only warrants worrying
about if it is found that frames are being lost due to the overhead in LANPACK.

3. The "dummy" request mechanism doesn't work at the moment What happens is that when the link is
brought up, the first dummy request is successfully sent and acknowledged, but the second does not get
an acknowledgment. This occurs whatever type of dummy request is used, and the problem has not
been located. More than likely it is a problem with the LANPACK/IPX software as there is no logical
explanation as to why the server should reject a request. The current requests being sent are NDS
"ping" requests; these should always have replies forthcoming. What has been tested is setting up a
scenario where only one sequence number is "missing", therefore only one dummy request need be
sent. This worked.

Note that even if this problem was solvable there is still the question of the excessive time required to
send all the dummy requests. In addition, support should be added for the possible situation where a
dummy request is "lost"; this would add significant overhead to the software, but is a definite
requirement if this strategy is to be pursued.

4. It is important to note that frames going to the link are in the 001 format where they are fragmented, so
for examination the fragments need to be aggregated. They must sent to the J2050 in a contiguous
form. however.

5. One major problem is that of logging; too much logging ends up causing significant problems. The
JDISK task ends up spending considerable time writing out to disk and as a consequence, some frames
are lost and never seen by LANP ACK. This causes error messages at the client, requiring manual
intervention. When developing, this must be taken into consideration -- though clearly these debug
messages are taken out in the "final" version and won't cause a problem then.

IPXSPOOF.DOC 8 mgream-- 24/0 1/95-- V
1

