
Source Code Revision Control Procedures

TEAM A : Communications and Integration Group

15 April, 1995

1 Introduction

This document specifies the revision control procedures to be used for source code in the AMC
system. It provides an outline of the functionality of the RCS software in doing so.

2 Purpose

Version control is a necessary part of systems engineering. We suggest that were possible, groups
use version control as part of their development process.

3 What is version control with respect to source code ?

For source code (and in the context of this project) version control is a means of storing current
and previous versions of particular files. In doing so, it is possible to not only recall previous
versions (without the subsequent changes that were made) by to extract specific “differentials”
between versions. This can help debugging significantly.

There are two popular (but many others are available) revision control systems available for source
code: RCS (Revision Control System) and SCCS (Source Code Control System). We specify the
former since it is available as a GNU product: i.e. it is free to use, and source code is available.
RCS is available as a set of MSDOS executables.

Note: The Communications and Integration Group will require that it take hold of copies of source
code and executables that have passed the unit acceptance test. This is a measure of safety. During
integration, it is highly likely that changes will need to be made to units. It is likely that during
subsequent unit acceptance test, or throughout these changes, that errors will be introduced. By
using a version control system, it is possible to easily track through changes to locate problems.

4 How is RCS used ?

RCS can be used on any type of ASCII files. Standard programming languages such as ‘C’ and
‘Pascal’ which inherently use ASCII files have no problems satisfying this requisite. For other
programming languages that don’t use ASCII files (e.g. that which is used for the Petra), it may

1

be possible to “export” to an ASCII format. Even if this ASCII format cannot be “imported”,
applying revision control still allows for changes to be tracked and examined.

A copy of the RCS executables is requred. These are supplied by the Communications and
Integration Group.

ci.exe 63351 1-08-94 15:29
co.exe 59957 1-08-94 15:29
diff.exe 66725 25-06-94 17:04
diff3.exe 30967 25-06-94 17:05
ident.exe 10393 1-08-94 15:29
rcs.exe 63531 1-08-94 15:29
merge.exe 46011 1-08-94 15:29
rcsclean.exe 58535 1-08-94 15:29
rcsdiff.exe 47179 1-08-94 15:29
rcsmerge.exe 46793 1-08-94 15:30
rlog.exe 51609 1-08-94 15:30

These files are RCS version 5.6.7.4 (beta) and GNU diff[3] version 1.15 (16-bit).

A directory within which your source code is stored (in an appropriate ASCII format) is required.
There needs to be a subdirectory named RCS, which is used by the RCS software to store infor-
mation.

. <DIR> 15-04-95 5:22

.. <DIR> 15-04-95 5:22
RCS <DIR> 15-04-95 5:25
rtmk.c 5746 15-04-95 5:51
rtmk.h 735 15-04-95 5:51
test.c 746 15-04-95 5:53

RCS is also able to “translate” keywords that are embedded in source code files. This means
that a file can be viewed and, by examination of the keyword, an indication can be obtained of
the current version of the file, the date it was “checked in” (i.e. last modified) and so on. These
keywords can be placed anywhere: they can form part of comments, or they can form part of
strings and details you show during run time. The ident.exe program is able to examine these
files and display the keywords.

The test.c file contains the following, notice the Id keywords. One exists in the comment, and
the other as a static variable.

/* Test for Kernel:
* Id
*/

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <signal.h>
#include <stdlib.h>
#include <time.h>

2

#include "rtmk.h"

static const char rcs_id[] =
"Id";

PROCESS p1, p2;

[...]

int main (void)
{
printf ("Test Program [%s]\n", rcs_id);
randomize ();
create_process (&p1, process1);
create_process (&p2, process2);
run_kernel ();
return (0);

}

To put this file under revision control, the ci.exe program is needed. “ci” is an acronym for
“check in”. The following shows how the files are checked in.

d:\tmp\test# ci *.c *.h
RCS/RTMK.C <-- RTMK.C
enter description, terminated with single ’.’ or end of file:
NOTE: This is NOT the log message!
>> the real time multitasking kernel -- core functionality
>> .
initial revision: 1.1
done
RCS/TEST.C <-- TEST.C
enter description, terminated with single ’.’ or end of file:
NOTE: This is NOT the log message!
>> a test program for RTMK
>> .
initial revision: 1.1
done
RCS/RTMK.H <-- RTMK.H
enter description, terminated with single ’.’ or end of file:
NOTE: This is NOT the log message!
>> the real time multitasking kernel -- header interface file
>> .
initial revision: 1.1
done

The directory (d:/tmp/test) is now empty because all the files have been checked into the RCS
directory. The files in the RCS directory are in a special format, they cannot be used directly.

After checking in, the first task is to “unlock” the files. Because RCS is able to co-ordinate multiple
user access to files, it can lock files so that only particular people can access them at particular
times. This functionality is not required in a small project, so is not considered here. Each file
must be “unlocked”.

3

d:\tmp\test# rcs -U rtmk.c rtmk.h test.c
RCS file: RCS/rtmk.c
done
RCS file: RCS/rtmk.h
done
RCS file: RCS/test.c
done

The current version of the files can now be “checked out”.

d:\tmp\test#co rtmk.c rtmk.h test.c
RCS/rtmk.c --> rtmk.c
revision 1.1
done
RCS/rtmk.h --> rtmk.h
revision 1.1
done
RCS/test.c --> test.c
revision 1.1
done

And the directory (d:/tmp/test) now contains a copy of each file. The keywords that were embed-
ded have been expanded to show the current version, and other details, including the LOGNAME
(an environment variable that must be set to some short ASCII name) indicating who checked out
the files. The relevant parts of the test.c file contain the expanded keywords.

/* Test for Kernel:
* $Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $
*/

[...]

static const char rcs_id[] =
"$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $";

[...]

{
printf ("Test Program [%s]\n", rcs_id);

[...]

The ident.exe program if applied will also show these keywords.

d:\tmp\test# ident *.c *.h
RTMK.C:

$Id: rtmk.c 1.1 1995/04/15 05:58:19 teama-ci Exp $
TEST.C:

$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $
$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $

RTMK.H:
$Id: rtmk.h 1.1 1995/04/15 05:58:19 teama-ci Exp $

4

If this software is now compiled, then the keywords that were embedded as source code comments
will be removed, but the binaries will retain the keywords that were specified as data. After
compilation, therefore, ident.exe now reports the keywords that are embedded in the executable.

d:\tmp\test# ident test.exe
TEST.EXE:

$Id: rtmk.c 1.1 1995/04/15 05:58:19 teama-ci Exp $
$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $

If the program is run, then the printf shown above will report one of the keywords (note that
there are quite a few different keywords that can be used, but Id is the one which summaries
best).

d:\tmp\test# test
Test Program [$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $]
GRXKYUFFLKQVRZQRVFHYQTDRNTTVXWXTCCQEEOTDFZDGNQJVGZKQRXCJJZWN-EOL
^C

If the test.c file is then modified, it can be checked back in as a new version (note that it
is not a good idea to check in versions because of trivial changes, checkins should be done at
either milestones or points of major change such as for example a rewrite of some particular
implementation mechanism): think “major” changes.

d:\tmp\test# ci test.c
RCS/test.c <-- test.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ’.’ or end of file:
>> minor changes
>> .
done

d:\tmp\test# co test.c
RCS/test.c --> test.c
revision 1.2
done

The keyword fields have been updated, as shown by ident.

d:\tmp\test# ident test.c
test.c:

$Id: test.c 1.2 1995/04/15 06:13:19 teama-ci Exp $
$Id: test.c 1.2 1995/04/15 06:13:19 teama-ci Exp $

These will be reflected in a rebuild of the executable.

It is possible to retrieve earlier versions, or differences between versions. Consider checking out
version 1.1 (which was the very first version).

d:\tmp\test# co -r1.1 test.c

5

RCS/test.c --> test.c
revision 1.1
writable test.c exists; remove it? [ny](n): y
done

d:\tmp\test# ident test.c
test.c:

$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $
$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $

Then going back to the current version.

d:\tmp\test# co test.c
RCS/test.c --> test.c
revision 1.2
writable test.c exists; remove it? [ny](n): y
done

d:\tmp\test# ident test.c
test.c:

$Id: test.c 1.2 1995/04/15 06:05:19 teama-ci Exp $
$Id: test.c 1.2 1995/04/15 06:05:19 teama-ci Exp $

It is possible to look at differences between versions. Note that the format of this diff is that
which is created by the diff program, and can be used with another item of program called patch
to be applied to files. One purpose of this is that when changes are made, only the changes need
to be distributed rather than a complete set of files. An explanation of patch, diff and related
issues is beyond the scope of this project.

d:\tmp\test# rcsdiff -r1.1 -r1.2 test.c
===
RCS file: RCS/test.c
retrieving revision 1.1
retrieving revision 1.2
diff -r1.1 -r1.2
3c3
< * $Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $

> * $Id: test.c 1.2 1995/04/15 06:05:19 teama-ci Exp $
15c15
< "$Id: test.c 1.1 1995/04/15 05:58:19 teama-ci Exp $";

> "$Id: test.c 1.2 1995/04/15 06:05:19 teama-ci Exp $";
24c24
< printf ("-EOL\n");

> printf (" - EOL\n");
32c32
< for (i = 0; i < 60; i++) putchar (random (26) + ’A’);

> for (i = 0; i < 40; i++) putchar (random (26) + ’A’);

6

It is possible to look at log files associated with versions of software.

d:\tmp\test# rlog test.c

RCS file: RCS/test.c
Working file: test.c
head: 1.2
branch:
locks:
access list:
symbolic names:
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:
a test program for RTMK

revision 1.2
date: 1995/04/15 06:05:19; author: teama-ci; state: Exp; lines: +4 -4
minor changes

revision 1.1
date: 1995/04/15 05:58:19; author: teama-ci; state: Exp;
Initial revision
===

Also, it is safe to delete files that have been checked out, and then just recheck them out again, it
is also safe to check in files that have not changed.

d:\tmp\test# ci rtmk.c
RCS/rtmk.c <-- rtmk.c
file is unchanged; reverting to previous revision 1.1
done

d:\tmp\test# co rtmk.c
RCS/rtmk.c --> rtmk.c
revision 1.1
done

d:\tmp\test# del rtmk.c
Deleting d:\tmp\test\rtmk.c

1 file(s) deleted 8,192 bytes freed

d:\tmp\test# co rtmk.c
RCS/rtmk.c --> rtmk.c
revision 1.1
done

5 Further Information

The “man” pages for these programs are attached. They provide more detailed information. The
Communications and Integration Group can also answer questions that may arise.

7

�
NAME
 ci - check in RCS revisions

SYNOPSIS
 ci [options] file ...

DESCRIPTION
 ci stores new revisions into RCS files. Each pathname
 matching an RCS suffix is taken to be an RCS file. All
 others are assumed to be working files containing new
 revisions. ci deposits the contents of each working file
 into the corresponding RCS file. If only a working file
 is given, ci tries to find the corresponding RCS file in
 an RCS subdirectory and then in the working file’s direc-
 tory. For more details, see FILE NAMING below.

 For ci to work, the caller’s login must be on the access
 list, except if the access list is empty or the caller is
 the superuser or the owner of the file. To append a new
 revision to an existing branch, the tip revision on that
 branch must be locked by the caller. Otherwise, only a
 new branch can be created. This restriction is not
 enforced for the owner of the file if non-strict locking
 is used (see rcs(1)). A lock held by someone else can be
 broken with the rcs command.

 Unless the -f option is given, ci checks whether the revi-
 sion to be deposited differs from the preceding one. If
 not, instead of creating a new revision ci reverts to the
 preceding one. To revert, ordinary ci removes the working
 file and any lock; ci -l keeps and ci -u removes any lock,
 and then they both generate a new working file much as if
 co -l or co -u had been applied to the preceding revision.
 When reverting, any -n and -s options apply to the preced-
 ing revision.

 For each revision deposited, ci prompts for a log message.
 The log message should summarize the change and must be
 terminated by end-of-file or by a line containing . by
 itself. If several files are checked in ci asks whether
 to reuse the previous log message. If the standard input
 is not a terminal, ci suppresses the prompt and uses the
 same log message for all files. See also -m.

 If the RCS file does not exist, ci creates it and deposits
 the contents of the working file as the initial revision
 (default number: 1.1). The access list is initialized to
 empty. Instead of the log message, ci requests descrip-
 tive text (see -t below).

 The number rev of the deposited revision can be given by
 any of the options -f, -i, -I, -j, -k, -l, -M, -q, -r, or
 -u. rev can be symbolic, numeric, or mixed. Symbolic
 names in rev must already be defined; see the -n and -N
 options for assigning names during checkin. If rev is $,
 ci determines the revision number from keyword values in
 the working file.

 If rev begins with a period, then the default branch (nor-
 mally the trunk) is prepended to it. If rev is a branch
 number followed by a period, then the latest revision on
 that branch is used.

 If rev is a revision number, it must be higher than the
 latest one on the branch to which rev belongs, or must
 start a new branch.

 If rev is a branch rather than a revision number, the new
 revision is appended to that branch. The level number is
 obtained by incrementing the tip revision number of that
 branch. If rev indicates a non-existing branch, that
 branch is created with the initial revision numbered
 rev.1.

 If rev is omitted, ci tries to derive the new revision
 number from the caller’s last lock. If the caller has
 locked the tip revision of a branch, the new revision is
 appended to that branch. The new revision number is
 obtained by incrementing the tip revision number. If the
 caller locked a non-tip revision, a new branch is started
 at that revision by incrementing the highest branch number
 at that revision. The default initial branch and level
 numbers are 1.

 If rev is omitted and the caller has no lock, but owns the
 file and locking is not set to strict, then the revision
 is appended to the default branch (normally the trunk; see
 the -b option of rcs(1)).

 Exception: On the trunk, revisions can be appended to the
 end, but not inserted.

OPTIONS
 -rrev Check in revision rev.

 -r The bare -r option (without any revision) has an
 unusual meaning in ci. With other RCS commands, a
 bare -r option specifies the most recent revision
 on the default branch, but with ci, a bare -r
 option reestablishes the default behavior of
 releasing a lock and removing the working file, and
 is used to override any default -l or -u options
 established by shell aliases or scripts.

 -l[rev]
 works like -r, except it performs an additional
 co -l for the deposited revision. Thus, the
 deposited revision is immediately checked out again
 and locked. This is useful for saving a revision
 although one wants to continue editing it after the
 checkin.

 -u[rev]
 works like -l, except that the deposited revision
 is not locked. This lets one read the working file
 immediately after checkin.

 The -l, bare -r, and -u options are mutually exclu-
 sive and silently override each other. For exam-
 ple, ci -u -r is equivalent to ci -r because bare
 -r overrides -u.

 -f[rev]
 forces a deposit; the new revision is deposited
 even it is not different from the preceding one.

 -k[rev]

 searches the working file for keyword values to
 determine its revision number, creation date,
 state, and author (see co(1)), and assigns these
 values to the deposited revision, rather than com-
 puting them locally. It also generates a default
 login message noting the login of the caller and
 the actual checkin date. This option is useful for
 software distribution. A revision that is sent to
 several sites should be checked in with the -k
 option at these sites to preserve the original num-
 ber, date, author, and state. The extracted key-
 word values and the default log message can be
 overridden with the options -d, -m, -s, -w, and any
 option that carries a revision number.

 -q[rev]
 quiet mode; diagnostic output is not printed. A
 revision that is not different from the preceding
 one is not deposited, unless -f is given.

 -i[rev]
 initial checkin; report an error if the RCS file
 already exists. This avoids race conditions in
 certain applications.

 -j[rev]
 just checkin and do not initialize; report an error
 if the RCS file does not already exist.

 -I[rev]
 interactive mode; the user is prompted and ques-
 tioned even if the standard input is not a termi-
 nal.

 -d[date]
 uses date for the checkin date and time. The date
 is specified in free format as explained in co(1).
 This is useful for lying about the checkin date,
 and for -k if no date is available. If date is
 empty, the working file’s time of last modification
 is used.

 -M[rev]
 Set the modification time on any new working file
 to be the date of the retrieved revision. For
 example, ci -d -M -u f does not alter f’s modifica-
 tion time, even if f’s contents change due to key-
 word substitution. Use this option with care; it
 can confuse make(1).

 -mmsg uses the string msg as the log message for all
 revisions checked in. By convention, log messages
 that start with # are comments and are ignored by
 programs like GNU Emacs’s vc package. Also, log
 messages that start with {clumpname} (followed by
 white space) are meant to be clumped together if
 possible, even if they are associated with differ-
 ent files; the {clumpname} label is used only for
 clumping, and is not considered to be part of the
 log message itself.

 -nname assigns the symbolic name name to the number of the
 checked-in revision. ci prints an error message if
 name is already assigned to another number.

 -Nname same as -n, except that it overrides a previous
 assignment of name.

 -sstate
 sets the state of the checked-in revision to the
 identifier state. The default state is Exp.

 -tfile writes descriptive text from the contents of the
 named file into the RCS file, deleting the existing
 text. The file cannot begin with -.

 -t-string
 Write descriptive text from the string into the RCS
 file, deleting the existing text.

 The -t option, in both its forms, has effect only
 during an initial checkin; it is silently ignored
 otherwise.

 During the initial checkin, if -t is not given, ci
 obtains the text from standard input, terminated by
 end-of-file or by a line containing . by itself.
 The user is prompted for the text if interaction is
 possible; see -I.

 For backward compatibility with older versions of
 RCS, a bare -t option is ignored.

 -T Set the RCS file’s modification time to the new
 revision’s time if the former precedes the latter
 and there is a new revision; preserve the RCS
 file’s modification time otherwise. If you have
 locked a revision, ci usually updates the RCS
 file’s modification time to the current time,
 because the lock is stored in the RCS file and
 removing the lock requires changing the RCS file.
 This can create an RCS file newer than the working
 file in one of two ways: first, ci -M can create a
 working file with a date before the current time;
 second, when reverting to the previous revision the
 RCS file can change while the working file remains
 unchanged. These two cases can cause excessive
 recompilation caused by a make(1) dependency of the
 working file on the RCS file. The -T option
 inhibits this recompilation by lying about the RCS
 file’s date. Use this option with care; it can
 suppress recompilation even when a checkin of one
 working file should affect another working file
 associated with the same RCS file. For example,
 suppose the RCS file’s time is 01:00, the (changed)
 working file’s time is 02:00, some other copy of
 the working file has a time of 03:00, and the cur-
 rent time is 04:00. Then ci -d -T sets the RCS
 file’s time to 02:00 instead of the usual 04:00;
 this causes make(1) to think (incorrectly) that the
 other copy is newer than the RCS file.

 -wlogin
 uses login for the author field of the deposited
 revision. Useful for lying about the author, and
 for -k if no author is available.

 -V Print RCS’s version number.

 -Vn Emulate RCS version n. See co(1) for details.

 -xsuffixes
 specifies the suffixes for RCS files. A nonempty
 suffix matches any pathname ending in the suffix.
 An empty suffix matches any pathname of the form
 RCS/path or path1/RCS/path2. The -x option can
 specify a list of suffixes separated by /. For
 example, -x,v/ specifies two suffixes: ,v and the
 empty suffix. If two or more suffixes are speci-
 fied, they are tried in order when looking for an
 RCS file; the first one that works is used for that
 file. If no RCS file is found but an RCS file can
 be created, the suffixes are tried in order to
 determine the new RCS file’s name. The default for
 suffixes is installation-dependent; normally it is
 ,v/ for hosts like Unix that permit commas in file-
 names, and is empty (i.e. just the empty suffix)
 for other hosts.

 -zzone specifies the date output format in keyword substi-
 tution, and specifies the default time zone for
 date in the -ddate option. The zone should be
 empty, a numeric UTC offset, or the special string
 LT for local time. The default is an empty zone,
 which uses the traditional RCS format of UTC with-
 out any time zone indication and with slashes sepa-
 rating the parts of the date; otherwise, times are
 output in ISO 8601 format with time zone indica-
 tion. For example, if local time is January 11,
 1990, 8pm Pacific Standard Time, eight hours west
 of UTC, then the time is output as 1990/01/11
 04:00:00 with -z, as 1990-01-11 20:00:00-0800 with
 -zLT, and as 1990-01-11 09:30:00+0530 with -z+0530.
 This option does not affect dates in RCS file them-
 selves, which are always UTC.

FILE NAMING
 Pairs of RCS files and working files can be specified in
 three ways (see also the example section).

 1) Both the RCS file and the working file are given. The
 RCS pathname is of the form path1/workfileX and the work-
 ing pathname is of the form path2/workfile where path1/
 and path2/ are (possibly different or empty) paths, work-
 file is a filename, and X is an RCS suffix. If X is
 empty, path1/ must start with RCS/ or must contain /RCS/.

 2) Only the RCS file is given. Then the working file is
 created in the current directory and its name is derived
 from the name of the RCS file by removing path1/ and the
 suffix X.

 3) Only the working file is given. Then ci considers each
 RCS suffix X in turn, looking for an RCS file of the form
 path2/RCS/workfileX or (if the former is not found and X
 is nonempty) path2/workfileX.

 If the RCS file is specified without a path in 1) and 2),
 ci looks for the RCS file first in the directory ./RCS and
 then in the current directory.

 ci reports an error if an attempt to open an RCS file

 fails for an unusual reason, even if the RCS file’s path-
 name is just one of several possibilities. For example,
 to suppress use of RCS commands in a directory d, create a
 regular file named d/RCS so that casual attempts to use
 RCS commands in d fail because d/RCS is not a directory.

EXAMPLES
 Suppose ,v is an RCS suffix and the current directory con-
 tains a subdirectory RCS with an RCS file io.c,v. Then
 each of the following commands check in a copy of io.c
 into RCS/io.c,v as the latest revision, removing io.c.

 ci io.c; ci RCS/io.c,v; ci io.c,v;
 ci io.c RCS/io.c,v; ci io.c io.c,v;
 ci RCS/io.c,v io.c; ci io.c,v io.c;

 Suppose instead that the empty suffix is an RCS suffix and
 the current directory contains a subdirectory RCS with an
 RCS file io.c. The each of the following commands checks
 in a new revision.

 ci io.c; ci RCS/io.c;
 ci io.c RCS/io.c;
 ci RCS/io.c io.c;

FILE MODES
 An RCS file created by ci inherits the read and execute
 permissions from the working file. If the RCS file exists
 already, ci preserves its read and execute permissions.
 ci always turns off all write permissions of RCS files.

FILES
 Temporary files are created in the directory containing
 the working file, and also in the temporary directory (see
 TMPDIR under ENVIRONMENT). A semaphore file or files are
 created in the directory containing the RCS file. With a
 nonempty suffix, the semaphore names begin with the first
 character of the suffix; therefore, do not specify an suf-
 fix whose first character could be that of a working file-
 name. With an empty suffix, the semaphore names end with
 _ so working filenames should not end in _.

 ci never changes an RCS or working file. Normally, ci
 unlinks the file and creates a new one; but instead of
 breaking a chain of one or more symbolic links to an RCS
 file, it unlinks the destination file instead. Therefore,
 ci breaks any hard or symbolic links to any working file
 it changes; and hard links to RCS files are ineffective,
 but symbolic links to RCS files are preserved.

 The effective user must be able to search and write the
 directory containing the RCS file. Normally, the real
 user must be able to read the RCS and working files and to
 search and write the directory containing the working
 file; however, some older hosts cannot easily switch
 between real and effective users, so on these hosts the
 effective user is used for all accesses. The effective
 user is the same as the real user unless your copies of ci
 and co have setuid privileges. As described in the next
 section, these privileges yield extra security if the
 effective user owns all RCS files and directories, and if
 only the effective user can write RCS directories.

 Users can control access to RCS files by setting the per-

 missions of the directory containing the files; only users
 with write access to the directory can use RCS commands to
 change its RCS files. For example, in hosts that allow a
 user to belong to several groups, one can make a group’s
 RCS directories writable to that group only. This
 approach suffices for informal projects, but it means that
 any group member can arbitrarily change the group’s RCS
 files, and can even remove them entirely. Hence more for-
 mal projects sometimes distinguish between an RCS adminis-
 trator, who can change the RCS files at will, and other
 project members, who can check in new revisions but cannot
 otherwise change the RCS files.

SETUID USE
 To prevent anybody but their RCS administrator from delet-
 ing revisions, a set of users can employ setuid privileges
 as follows.

 o Check that the host supports RCS setuid use. Consult a
 trustworthy expert if there are any doubts. It is best
 if the seteuid system call works as described in Posix
 1003.1a Draft 5, because RCS can switch back and forth
 easily between real and effective users, even if the
 real user is root. If not, the second best is if the
 setuid system call supports saved setuid (the
 {_POSIX_SAVED_IDS} behavior of Posix 1003.1-1990); this
 fails only if the real or effective user is root. If
 RCS detects any failure in setuid, it quits immediately.

 o Choose a user A to serve as RCS administrator for the
 set of users. Only A can invoke the rcs command on the
 users’ RCS files. A should not be root or any other
 user with special powers. Mutually suspicious sets of
 users should use different administrators.

 o Choose a pathname B to be a directory of files to be
 executed by the users.

 o Have A set up B to contain copies of ci and co that are
 setuid to A by copying the commands from their standard
 installation directory D as follows:

 mkdir B
 cp D/c[io] B
 chmod go-w,u+s B/c[io]

 o Have each user prepend B to their path as follows:

 PATH=B:$PATH; export PATH # ordinary shell
 set path=(B $path) # C shell

 o Have A create each RCS directory R with write access
 only to A as follows:

 mkdir R
 chmod go-w R

 o If you want to let only certain users read the RCS
 files, put the users into a group G, and have A further
 protect the RCS directory as follows:

 chgrp G R
 chmod g-w,o-rwx R

 o Have A copy old RCS files (if any) into R, to ensure
 that A owns them.

 o An RCS file’s access list limits who can check in and
 lock revisions. The default access list is empty, which
 grants checkin access to anyone who can read the RCS
 file. If you want limit checkin access, have A invoke
 rcs -a on the file; see rcs(1). In particular,
 rcs -e -aA limits access to just A.

 o Have A initialize any new RCS files with rcs -i before
 initial checkin, adding the -a option if you want to
 limit checkin access.

 o Give setuid privileges only to ci, co, and rcsclean; do
 not give them to rcs or to any other command.

 o Do not use other setuid commands to invoke RCS commands;
 setuid is trickier than you think!

ENVIRONMENT
 RCSINIT
 options prepended to the argument list, separated
 by spaces. A backslash escapes spaces within an
 option. The RCSINIT options are prepended to the
 argument lists of most RCS commands. Useful
 RCSINIT options include -q, -V, -x, and -z.

 TMPDIR Name of the temporary directory. If not set, the
 environment variables TMP and TEMP are inspected
 instead and the first value found is taken; if none
 of them are set, a host-dependent default is used,
 typically /tmp.

DIAGNOSTICS
 For each revision, ci prints the RCS file, the working
 file, and the number of both the deposited and the preced-
 ing revision. The exit status is zero if and only if all
 operations were successful.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.15; Release Date: 1994/03/17.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993, 1994 Paul Eggert.

SEE ALSO
 co(1), emacs(1), ident(1), make(1), rcs(1), rcsclean(1),
 rcsdiff(1), rcsintro(1), rcsmerge(1), rlog(1), setuid(2),
 rcsfile(5)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

�
NAME
 co - check out RCS revisions

SYNOPSIS
 co [options] file ...

DESCRIPTION
 co retrieves a revision from each RCS file and stores it
 into the corresponding working file.

 Pathnames matching an RCS suffix denote RCS files; all
 others denote working files. Names are paired as
 explained in ci(1).

 Revisions of an RCS file can be checked out locked or
 unlocked. Locking a revision prevents overlapping
 updates. A revision checked out for reading or processing
 (e.g., compiling) need not be locked. A revision checked
 out for editing and later checkin must normally be locked.
 Checkout with locking fails if the revision to be checked
 out is currently locked by another user. (A lock can be
 broken with rcs(1).) Checkout with locking also requires
 the caller to be on the access list of the RCS file,
 unless he is the owner of the file or the superuser, or
 the access list is empty. Checkout without locking is not
 subject to accesslist restrictions, and is not affected by
 the presence of locks.

 A revision is selected by options for revision or branch
 number, checkin date/time, author, or state. When the
 selection options are applied in combination, co retrieves
 the latest revision that satisfies all of them. If none
 of the selection options is specified, co retrieves the
 latest revision on the default branch (normally the trunk,
 see the -b option of rcs(1)). A revision or branch number
 can be attached to any of the options -f, -I, -l, -M, -p,
 -q, -r, or -u. The options -d (date), -s (state), and -w
 (author) retrieve from a single branch, the selected
 branch, which is either specified by one of -f, ..., -u,
 or the default branch.

 A co command applied to an RCS file with no revisions cre-
 ates a zero-length working file. co always performs key-
 word substitution (see below).

OPTIONS
 -r[rev]
 retrieves the latest revision whose number is less
 than or equal to rev. If rev indicates a branch
 rather than a revision, the latest revision on that
 branch is retrieved. If rev is omitted, the latest
 revision on the default branch (see the -b option
 of rcs(1)) is retrieved. If rev is $, co deter-
 mines the revision number from keyword values in
 the working file. Otherwise, a revision is com-
 posed of one or more numeric or symbolic fields
 separated by periods. If rev begins with a period,
 then the default branch (normally the trunk) is
 prepended to it. If rev is a branch number fol-
 lowed by a period, then the latest revision on that
 branch is used. The numeric equivalent of a sym-
 bolic field is specified with the -n option of the
 commands ci(1) and rcs(1).

 -l[rev]
 same as -r, except that it also locks the retrieved
 revision for the caller.

 -u[rev]
 same as -r, except that it unlocks the retrieved
 revision if it was locked by the caller. If rev is
 omitted, -u retrieves the revision locked by the
 caller, if there is one; otherwise, it retrieves

 the latest revision on the default branch.

 -f[rev]
 forces the overwriting of the working file; useful
 in connection with -q. See also FILE MODES below.

 -kkv Generate keyword strings using the default form,
 e.g. $Revision: 5.12 $ for the Revision keyword. A
 locker’s name is inserted in the value of the
 Header, Id, and Locker keyword strings only as a
 file is being locked, i.e. by ci -l and co -l.
 This is the default.

 -kkvl Like -kkv, except that a locker’s name is always
 inserted if the given revision is currently locked.

 -kk Generate only keyword names in keyword strings;
 omit their values. See KEYWORD SUBSTITUTION below.
 For example, for the Revision keyword, generate the
 string $Revision$ instead of $Revision: 5.12 $.
 This option is useful to ignore differences due to
 keyword substitution when comparing different revi-
 sions of a file. Log messages are inserted after
 Log keywords even if -kk is specified, since this
 tends to be more useful when merging changes.

 -ko Generate the old keyword string, present in the
 working file just before it was checked in. For
 example, for the Revision keyword, generate the
 string $Revision: 1.1 $ instead of $Revision: 5.12
 $ if that is how the string appeared when the file
 was checked in. This can be useful for binary file
 formats that cannot tolerate any changes to sub-
 strings that happen to take the form of keyword
 strings.

 -kv Generate only keyword values for keyword strings.
 For example, for the Revision keyword, generate the
 string 5.12 instead of $Revision: 5.12 $. This can
 help generate files in programming languages where
 it is hard to strip keyword delimiters like
 $Revision: $ from a string. However, further key-
 word substitution cannot be performed once the key-
 word names are removed, so this option should be
 used with care. Because of this danger of losing
 keywords, this option cannot be combined with -l,
 and the owner write permission of the working file
 is turned off; to edit the file later, check it out
 again without -kv.

 -p[rev]
 prints the retrieved revision on the standard out-
 put rather than storing it in the working file.
 This option is useful when co is part of a pipe.

 -q[rev]
 quiet mode; diagnostics are not printed.

 -I[rev]
 interactive mode; the user is prompted and ques-
 tioned even if the standard input is not a termi-
 nal.

 -ddate retrieves the latest revision on the selected

 branch whose checkin date/time is less than or
 equal to date. The date and time can be given in
 free format. The time zone LT stands for local
 time; other common time zone names are understood.
 For example, the following dates are equivalent if
 local time is January 11, 1990, 8pm Pacific Stan-
 dard Time, eight hours west of Coordinated Univer-
 sal Time (UTC):

 8:00 pm lt
 4:00 AM, Jan. 12, 1990 default is UTC
 1990-01-12 04:00:00+0000 ISO 8601 (UTC)
 1990-01-11 20:00:00-0800 ISO 8601 (local time)
 1990/01/12 04:00:00 traditional RCS format
 Thu Jan 11 20:00:00 1990 LT output of ctime(3) + LT
 Thu Jan 11 20:00:00 PST 1990 output of date(1)
 Fri Jan 12 04:00:00 GMT 1990
 Thu, 11 Jan 1990 20:00:00 -0800 Internet RFC 822
 12-January-1990, 04:00 WET

 Most fields in the date and time can be defaulted.
 The default time zone is normally UTC, but this can
 be overridden by the -z option. The other defaults
 are determined in the order year, month, day, hour,
 minute, and second (most to least significant). At
 least one of these fields must be provided. For
 omitted fields that are of higher significance than
 the highest provided field, the time zone’s current
 values are assumed. For all other omitted fields,
 the lowest possible values are assumed. For exam-
 ple, without -z, the date 20, 10:30 defaults to
 10:30:00 UTC of the 20th of the UTC time zone’s
 current month and year. The date/time must be
 quoted if it contains spaces.

 -M[rev]
 Set the modification time on the new working file
 to be the date of the retrieved revision. Use this
 option with care; it can confuse make(1).

 -sstate
 retrieves the latest revision on the selected
 branch whose state is set to state.

 -T Preserve the modification time on the RCS file even
 if the RCS file changes because a lock is added or
 removed. This option can suppress extensive recom-
 pilation caused by a make(1) dependency of some
 other copy of the working file on the RCS file.
 Use this option with care; it can suppress recompi-
 lation even when it is needed, i.e. when the change
 of lock would mean a change to keyword strings in
 the other working file.

 -w[login]
 retrieves the latest revision on the selected
 branch which was checked in by the user with login
 name login. If the argument login is omitted, the
 caller’s login is assumed.

 -jjoinlist
 generates a new revision which is the join of the
 revisions on joinlist. This option is largely
 obsoleted by rcsmerge(1) but is retained for back-

 wards compatibility.

 The joinlist is a comma-separated list of pairs of
 the form rev2:rev3, where rev2 and rev3 are (sym-
 bolic or numeric) revision numbers. For the ini-
 tial such pair, rev1 denotes the revision selected
 by the above options -f, ..., -w. For all other
 pairs, rev1 denotes the revision generated by the
 previous pair. (Thus, the output of one join
 becomes the input to the next.)

 For each pair, co joins revisions rev1 and rev3
 with respect to rev2. This means that all changes
 that transform rev2 into rev1 are applied to a copy
 of rev3. This is particularly useful if rev1 and
 rev3 are the ends of two branches that have rev2 as
 a common ancestor. If rev1<rev2<rev3 on the same
 branch, joining generates a new revision which is
 like rev3, but with all changes that lead from rev1
 to rev2 undone. If changes from rev2 to rev1 over-
 lap with changes from rev2 to rev3, co reports
 overlaps as described in merge(1).

 For the initial pair, rev2 can be omitted. The
 default is the common ancestor. If any of the
 arguments indicate branches, the latest revisions
 on those branches are assumed. The options -l and
 -u lock or unlock rev1.

 -V Print RCS’s version number.

 -Vn Emulate RCS version n, where n can be 3, 4, or 5.
 This can be useful when interchanging RCS files
 with others who are running older versions of RCS.
 To see which version of RCS your correspondents are
 running, have them invoke rcs -V; this works with
 newer versions of RCS. If it doesn’t work, have
 them invoke rlog on an RCS file; if none of the
 first few lines of output contain the string
 branch: it is version 3; if the dates’ years have
 just two digits, it is version 4; otherwise, it is
 version 5. An RCS file generated while emulating
 version 3 loses its default branch. An RCS revi-
 sion generated while emulating version 4 or earlier
 has a time stamp that is off by up to 13 hours. A
 revision extracted while emulating version 4 or
 earlier contains abbreviated dates of the form
 yy/mm/dd and can also contain different white space
 and line prefixes in the substitution for Log.

 -xsuffixes
 Use suffixes to characterize RCS files. See ci(1)
 for details.

 -zzone specifies the date output format in keyword substi-
 tution, and specifies the default time zone for
 date in the -ddate option. The zone should be
 empty, a numeric UTC offset, or the special string
 LT for local time. The default is an empty zone,
 which uses the traditional RCS format of UTC with-
 out any time zone indication and with slashes sepa-
 rating the parts of the date; otherwise, times are
 output in ISO 8601 format with time zone indica-
 tion. For example, if local time is January 11,

 1990, 8pm Pacific Standard Time, eight hours west
 of UTC, then the time is output as follows:

 option time output
 -z 1990/01/11 04:00:00 (default)
 -zLT 1990-01-11 20:00:00-0800
 -z+0530 1990-01-11 09:30:00+0530

 The -z option does not affect dates stored in RCS
 files, which are always UTC.

KEYWORD SUBSTITUTION
 Strings of the form $keyword$ and $keyword:...$ embedded
 in the text are replaced with strings of the form $key-
 word:value$ where keyword and value are pairs listed
 below. Keywords can be embedded in literal strings or
 comments to identify a revision.

 Initially, the user enters strings of the form $keyword$.
 On checkout, co replaces these strings with strings of the
 form $keyword:value$. If a revision containing strings of
 the latter form is checked back in, the value fields will
 be replaced during the next checkout. Thus, the keyword
 values are automatically updated on checkout. This auto-
 matic substitution can be modified by the -k options.

 Keywords and their corresponding values:

 $Author$
 The login name of the user who checked in the revi-
 sion.

 $Date$ The date and time the revision was checked in.
 With -zzone a numeric time zone offset is appended;
 otherwise, the date is UTC.

 $Header$
 A standard header containing the full pathname of
 the RCS file, the revision number, the date and
 time, the author, the state, and the locker (if
 locked). With -zzone a numeric time zone offset is
 appended to the date; otherwise, the date is UTC.

 Id Same as $Header$, except that the RCS filename is
 without a path.

 $Locker$
 The login name of the user who locked the revision
 (empty if not locked).

 Log The log message supplied during checkin, preceded
 by a header containing the RCS filename, the revi-
 sion number, the author, and the date and time.
 With -zzone a numeric time zone offset is appended;
 otherwise, the date is UTC. Existing log messages
 are not replaced. Instead, the new log message is
 inserted after $Log:...$. This is useful for
 accumulating a complete change log in a source
 file. Each inserted line is prefixed by the string
 that prefixes the Log line. For example, if the
 Log line is "// $Log: tan.cc $", RCS prefixes
 each line of the log with "// ". This is useful
 for programming languages without multi-line com-
 ments.

 $Name$ The symbolic name used to check out the revision,
 if any. For example, co -rJoe generates
 $Name: Joe $. Plain co generates just $Name: $.

 $RCSfile$
 The name of the RCS file without a path.

 $Revision$
 The revision number assigned to the revision.

 $Source$
 The full pathname of the RCS file.

 $State$
 The state assigned to the revision with the -s
 option of rcs(1) or ci(1).

 The following characters in keyword values are represented
 by escape sequences to keep keyword strings well-formed.

 char escape sequence
 tab \t
 newline \n
 space \040
 $ \044
 \ \\

FILE MODES
 The working file inherits the read and execute permissions
 from the RCS file. In addition, the owner write permis-
 sion is turned on, unless -kv is set or the file is
 checked out unlocked and locking is set to strict (see
 rcs(1)).

 If a file with the name of the working file exists already
 and has write permission, co aborts the checkout, asking
 beforehand if possible. If the existing working file is
 not writable or -f is given, the working file is deleted
 without asking.

FILES
 co accesses files much as ci(1) does, except that it does
 not need to read the working file unless a revision number
 of $ is specified.

ENVIRONMENT
 RCSINIT
 options prepended to the argument list, separated
 by spaces. See ci(1) for details.

DIAGNOSTICS
 The RCS pathname, the working pathname, and the revision
 number retrieved are written to the diagnostic output.
 The exit status is zero if and only if all operations were
 successful.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.12; Release Date: 1994/03/17.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993, 1994 Paul Eggert.

SEE ALSO

 rcsintro(1), ci(1), ctime(3), date(1), ident(1), make(1),
 rcs(1), rcsclean(1), rcsdiff(1), rcsmerge(1), rlog(1),
 rcsfile(5)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

LIMITS
 Links to the RCS and working files are not preserved.

 There is no way to selectively suppress the expansion of
 keywords, except by writing them differently. In nroff
 and troff, this is done by embedding the null-character \&
 into the keyword.

�
NAME
 ident - identify RCS keyword strings in files

SYNOPSIS
 ident [-q] [-V] [file ...]

DESCRIPTION
 ident searches for all instances of the pattern
 $keyword: text $ in the named files or, if no files are
 named, the standard input.

 These patterns are normally inserted automatically by the
 RCS command co(1), but can also be inserted manually. The
 option -q suppresses the warning given if there are no
 patterns in a file. The option -V prints ident’s version
 number.

 ident works on text files as well as object files and
 dumps. For example, if the C program in f.c contains

 #include <stdio.h>
 static char const rcsid[] =
 "$Id: f.c,v 5.4 1993/11/09 17:40:15 eggert Exp
 $";
 int main() { return printf("%s\n", rcsid) == EOF; }

 and f.c is compiled into f.o, then the command

 ident f.c f.o

 will output

 f.c:
 $Id: f.c,v 5.4 1993/11/09 17:40:15 eggert Exp $
 f.o:
 $Id: f.c,v 5.4 1993/11/09 17:40:15 eggert Exp $

 If a C program defines a string like rcsid above but does
 not use it, lint(1) may complain, and some C compilers
 will optimize away the string. The most reliable solution
 is to have the program use the rcsid string, as shown in
 the example above.

 ident finds all instances of the $keyword: text $ pattern,
 even if keyword is not actually an RCS-supported keyword.
 This gives you information about nonstandard keywords like
 $XConsortium$.

KEYWORDS
 Here is the list of keywords currently maintained by
 co(1). All times are given in Coordinated Universal Time
 (UTC, sometimes called GMT) by default, but if the files
 were checked out with co’s -zzone option, times are given
 with a numeric time zone indication appended.

 $Author$
 The login name of the user who checked in the revi-
 sion.

 $Date$ The date and time the revision was checked in.

 $Header$
 A standard header containing the full pathname of
 the RCS file, the revision number, the date and
 time, the author, the state, and the locker (if
 locked).

 Id Same as $Header$, except that the RCS filename is
 without a path.

 $Locker$
 The login name of the user who locked the revision
 (empty if not locked).

 Log The log message supplied during checkin. For
 ident’s purposes, this is equivalent to $RCSfile$.

 $Name$ The symbolic name used to check out the revision,
 if any.

 $RCSfile$
 The name of the RCS file without a path.

 $Revision$
 The revision number assigned to the revision.

 $Source$
 The full pathname of the RCS file.

 $State$
 The state assigned to the revision with the -s
 option of rcs(1) or ci(1).

 co(1) represents the following characters in keyword val-
 ues by escape sequences to keep keyword strings well-
 formed.

 char escape sequence
 tab \t
 newline \n
 space \040
 $ \044
 \ \\

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.4; Release Date: 1993/11/09.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1992, 1993 Paul Eggert.

SEE ALSO
 ci(1), co(1), rcs(1), rcsdiff(1), rcsintro(1),

 rcsmerge(1), rlog(1), rcsfile(5)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

�
NAME
 merge - three-way file merge

SYNOPSIS
 merge [options] file1 file2 file3

DESCRIPTION
 merge incorporates all changes that lead from file2 to
 file3 into file1. The result ordinarily goes into file1.
 merge is useful for combining separate changes to an orig-
 inal. Suppose file2 is the original, and both file1 and
 file3 are modifications of file2. Then merge combines
 both changes.

 A conflict occurs if both file1 and file3 have changes in
 a common segment of lines. If a conflict is found, merge
 normally outputs a warning and brackets the conflict with
 <<<<<<< and >>>>>>> lines. A typical conflict will look
 like this:

 <<<<<<< file A
 lines in file A
 =======
 lines in file B
 >>>>>>> file B

 If there are conflicts, the user should edit the result
 and delete one of the alternatives.

OPTIONS
 -A Output conflicts using the -A style of diff3(1), if
 supported by diff3. This merges all changes lead-
 ing from file2 to file3 into file1, and is usually
 the best choice for merging. This option is the
 default if diff3 supports it.

 -E, -e These options specify conflict styles that generate
 less information than -A. See diff3(1) for
 details. If diff3 does not support -A, then -E is
 the default if it is supported, and -e is other-
 wise. With -e, merge does not warn about con-
 flicts.

 -L label
 This option may be given up to three times, and
 specifies labels to be used in place of the corre-
 sponding file names in conflict reports. That is,
 merge -L x -L y -L z a b c generates output that
 looks like it came from files x, y and z instead of
 from files a, b and c.

 -p Send results to standard output instead of over-
 writing file1.

 -q Quiet; do not warn about conflicts. -V Print ’s
 version number.

DIAGNOSTICS

 Exit status is 0 for no conflicts, 1 for some conflicts, 2
 for trouble.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.6; Release Date: 1993/11/09.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
 diff3(1), diff(1), rcsmerge(1), co(1).

�
NAME
 rcs - change RCS file attributes

SYNOPSIS
 rcs [options] file ...

DESCRIPTION
 rcs creates new RCS files or changes attributes of exist-
 ing ones. An RCS file contains multiple revisions of
 text, an access list, a change log, descriptive text, and
 some control attributes. For rcs to work, the caller’s
 login name must be on the access list, except if the
 access list is empty, the caller is the owner of the file
 or the superuser, or the -i option is present.

 Pathnames matching an RCS suffix denote RCS files; all
 others denote working files. Names are paired as
 explained in ci(1). Revision numbers use the syntax
 described in ci(1).

OPTIONS
 -i Create and initialize a new RCS file, but do not
 deposit any revision. If the RCS file has no path
 prefix, try to place it first into the subdirectory
 ./RCS, and then into the current directory. If the
 RCS file already exists, print an error message.

 -alogins
 Append the login names appearing in the comma-
 separated list logins to the access list of the RCS
 file.

 -Aoldfile
 Append the access list of oldfile to the access
 list of the RCS file.

 -e[logins]
 Erase the login names appearing in the comma-
 separated list logins from the access list of the
 RCS file. If logins is omitted, erase the entire
 access list.

 -b[rev]
 Set the default branch to rev. If rev is omitted,
 the default branch is reset to the (dynamically)
 highest branch on the trunk.

 -cstring
 sets the comment leader to string. This option is
 obsolescent, since RCS normally uses the preceding
 Log line’s prefix when inserting log lines during

 checkout (see co(1)). However, older versions of
 RCS use the comment leader instead of the Log
 line’s prefix. An initial ci, or an rcs -i without
 -c, guesses the comment leader from the suffix of
 the working filename.

 -ksubst
 Set the default keyword substitution to subst. The
 effect of keyword substitution is described in
 co(1). Giving an explicit -k option to co, rcsd-
 iff, and rcsmerge overrides this default. Beware
 rcs -kv, because -kv is incompatible with co -l.
 Use rcs -kkv to restore the normal default keyword
 substitution.

 -l[rev]
 Lock the revision with number rev. If a branch is
 given, lock the latest revision on that branch. If
 rev is omitted, lock the latest revision on the
 default branch. Locking prevents overlapping
 changes. If someone else already holds the lock,
 the lock is broken as with rcs -u (see below).

 -u[rev]
 Unlock the revision with number rev. If a branch
 is given, unlock the latest revision on that
 branch. If rev is omitted, remove the latest lock
 held by the caller. Normally, only the locker of a
 revision can unlock it. Somebody else unlocking a
 revision breaks the lock. This causes a mail mes-
 sage to be sent to the original locker. The mes-
 sage contains a commentary solicited from the
 breaker. The commentary is terminated by end-of-
 file or by a line containing . by itself.

 -L Set locking to strict. Strict locking means that
 the owner of an RCS file is not exempt from locking
 for checkin. This option should be used for files
 that are shared.

 -U Set locking to non-strict. Non-strict locking
 means that the owner of a file need not lock a
 revision for checkin. This option should not be
 used for files that are shared. Whether default
 locking is strict is determined by your system
 administrator, but it is normally strict.

 -mrev:msg
 Replace revision rev’s log message with msg.

 -M Do not send mail when breaking somebody else’s
 lock. This option is not meant for casual use; it
 is meant for programs that warn users by other
 means, and invoke rcs -u only as a low-level lock-
 breaking operation.

 -nname[:[rev]]
 Associate the symbolic name name with the branch or
 revision rev. Delete the symbolic name if both :
 and rev are omitted; otherwise, print an error mes-
 sage if name is already associated with another
 number. If rev is symbolic, it is expanded before
 association. A rev consisting of a branch number
 followed by a . stands for the current latest revi-

 sion in the branch. A : with an empty rev stands
 for the current latest revision on the default
 branch, normally the trunk. For example,
 rcs -nname: RCS/* associates name with the current
 latest revision of all the named RCS files; this
 contrasts with rcs -nname:$ RCS/* which associates
 name with the revision numbers extracted from key-
 word strings in the corresponding working files.

 -Nname[:[rev]]
 Act like -n, except override any previous assign-
 ment of name.

 -orange
 deletes ("outdates") the revisions given by range.
 A range consisting of a single revision number
 means that revision. A range consisting of a
 branch number means the latest revision on that
 branch. A range of the form rev1:rev2 means revi-
 sions rev1 to rev2 on the same branch, :rev means
 from the beginning of the branch containing rev up
 to and including rev, and rev: means from revision
 rev to the end of the branch containing rev. None
 of the outdated revisions can have branches or
 locks.

 -q Run quietly; do not print diagnostics.

 -I Run interactively, even if the standard input is
 not a terminal.

 -sstate[:rev]
 Set the state attribute of the revision rev to
 state. If rev is a branch number, assume the lat-
 est revision on that branch. If rev is omitted,
 assume the latest revision on the default branch.
 Any identifier is acceptable for state. A useful
 set of states is Exp (for experimental), Stab (for
 stable), and Rel (for released). By default, ci(1)
 sets the state of a revision to Exp.

 -t[file]
 Write descriptive text from the contents of the
 named file into the RCS file, deleting the existing
 text. The file pathname cannot begin with -. If
 file is omitted, obtain the text from standard
 input, terminated by end-of-file or by a line con-
 taining . by itself. Prompt for the text if inter-
 action is possible; see -I. With -i, descriptive
 text is obtained even if -t is not given.

 -t-string
 Write descriptive text from the string into the RCS
 file, deleting the existing text.

 -T Preserve the modification time on the RCS file
 unless a revision is removed. This option can sup-
 press extensive recompilation caused by a make(1)
 dependency of some copy of the working file on the
 RCS file. Use this option with care; it can sup-
 press recompilation even when it is needed, i.e.
 when a change to the RCS file would mean a change
 to keyword strings in the working file.

 -V Print RCS’s version number.

 -Vn Emulate RCS version n. See co(1) for details.

 -xsuffixes
 Use suffixes to characterize RCS files. See ci(1)
 for details.

 -zzone Use zone as the default time zone. This option has
 no effect; it is present for compatibility with
 other RCS commands.

COMPATIBILITY
 The -brev option generates an RCS file that cannot be
 parsed by RCS version 3 or earlier.

 The -ksubst options (except -kkv) generate an RCS file
 that cannot be parsed by RCS version 4 or earlier.

 Use rcs -Vn to make an RCS file acceptable to RCS version
 n by discarding information that would confuse version n.

 RCS version 5.5 and earlier does not support the -x
 option, and requires a ,v suffix on an RCS pathname.

FILES
 rcs accesses files much as ci(1) does, except that it uses
 the effective user for all accesses, it does not write the
 working file or its directory, and it does not even read
 the working file unless a revision number of $ is speci-
 fied.

ENVIRONMENT
 RCSINIT
 options prepended to the argument list, separated
 by spaces. See ci(1) for details.

DIAGNOSTICS
 The RCS pathname and the revisions outdated are written to
 the diagnostic output. The exit status is zero if and
 only if all operations were successful.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.11; Release Date: 1994/03/17.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993, 1994 Paul Eggert.

SEE ALSO
 rcsintro(1), co(1), ci(1), ident(1), rcsclean(1), rcsd-
 iff(1), rcsmerge(1), rlog(1), rcsfile(5)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

BUGS
 A catastrophe (e.g. a system crash) can cause RCS to leave
 behind a semaphore file that causes later invocations of
 RCS to claim that the RCS file is in use. To fix this,
 remove the semaphore file. A semaphore file’s name typi-
 cally begins with , or ends with _.

 The separator for revision ranges in the -o option used to
 be - instead of :, but this leads to confusion when sym-

 bolic names contain -. For backwards compatibility rcs -o
 still supports the old - separator, but it warns about
 this obsolete use.

 Symbolic names need not refer to existing revisions or
 branches. For example, the -o option does not remove sym-
 bolic names for the outdated revisions; you must use -n to
 remove the names.

�
NAME
 rcsclean - clean up working files

SYNOPSIS
 rcsclean [options] [file ...]

DESCRIPTION
 rcsclean removes files that are not being worked on.
 rcsclean -u also unlocks and removes files that are being
 worked on but have not changed.

 For each file given, rcsclean compares the working file
 and a revision in the corresponding RCS file. If it finds
 a difference, it does nothing. Otherwise, it first
 unlocks the revision if the -u option is given, and then
 removes the working file unless the working file is
 writable and the revision is locked. It logs its actions
 by outputting the corresponding rcs -u and rm -f commands
 on the standard output.

 Files are paired as explained in ci(1). If no file is
 given, all working files in the current directory are
 cleaned. Pathnames matching an RCS suffix denote RCS
 files; all others denote working files.

 The number of the revision to which the working file is
 compared may be attached to any of the options -n, -q, -r,
 or -u. If no revision number is specified, then if the -u
 option is given and the caller has one revision locked,
 rcsclean uses that revision; otherwise rcsclean uses the
 latest revision on the default branch, normally the root.

 rcsclean is useful for clean targets in makefiles. See
 also rcsdiff(1), which prints out the differences, and
 ci(1), which normally reverts to the previous revision if
 a file was not changed.

OPTIONS
 -ksubst
 Use subst style keyword substitution when retriev-
 ing the revision for comparison. See co(1) for
 details.

 -n[rev]
 Do not actually remove any files or unlock any
 revisions. Using this option will tell you what
 rcsclean would do without actually doing it.

 -q[rev]
 Do not log the actions taken on standard output.

 -r[rev]
 This option has no effect other than specifying the
 revision for comparison.

 -T Preserve the modification time on the RCS file even
 if the RCS file changes because a lock is removed.
 This option can suppress extensive recompilation
 caused by a make(1) dependency of some other copy
 of the working file on the RCS file. Use this
 option with care; it can suppress recompilation
 even when it is needed, i.e. when the lock removal
 would mean a change to keyword strings in the other
 working file.

 -u[rev]
 Unlock the revision if it is locked and no differ-
 ence is found.

 -V Print RCS’s version number.

 -Vn Emulate RCS version n. See co(1) for details.

 -xsuffixes
 Use suffixes to characterize RCS files. See ci(1)
 for details.

 -zzone Use zone as the time zone for keyword substitution;
 see co(1) for details.

EXAMPLES
 rcsclean *.c *.h

 removes all working files ending in .c or .h that were not
 changed since their checkout.

 rcsclean

 removes all working files in the current directory that
 were not changed since their checkout.

FILES
 rcsclean accesses files much as ci(1) does.

ENVIRONMENT
 RCSINIT
 options prepended to the argument list, separated
 by spaces. A backslash escapes spaces within an
 option. The RCSINIT options are prepended to the
 argument lists of most RCS commands. Useful
 RCSINIT options include -q, -V, -x, and -z.

DIAGNOSTICS
 The exit status is zero if and only if all operations were
 successful. Missing working files and RCS files are
 silently ignored.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 1.12; Release Date: 1993/11/03.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
 ci(1), co(1), ident(1), rcs(1), rcsdiff(1), rcsintro(1),
 rcsmerge(1), rlog(1), rcsfile(5)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),

 637-654.

BUGS
 At least one file must be given in older Unix versions
 that do not provide the needed directory scanning opera-
 tions.

�
NAME
 rcsdiff - compare RCS revisions

SYNOPSIS
 rcsdiff [-ksubst] [-q] [-rrev1 [-rrev2]] [-T] [
 -V[n]] [-xsuffixes] [-zzone] [diff options] file
 ...

DESCRIPTION
 rcsdiff runs diff(1) to compare two revisions of each RCS
 file given.

 Pathnames matching an RCS suffix denote RCS files; all
 others denote working files. Names are paired as
 explained in ci(1).

 The option -q suppresses diagnostic output. Zero, one, or
 two revisions may be specified with -r. The option
 -ksubst affects keyword substitution when extracting revi-
 sions, as described in co(1); for example, -kk -r1.1 -r1.2
 ignores differences in keyword values when comparing revi-
 sions 1.1 and 1.2. To avoid excess output from locker
 name substitution, -kkvl is assumed if (1) at most one
 revision option is given, (2) no -k option is given, (3)
 -kkv is the default keyword substitution, and (4) the
 working file’s mode would be produced by co -l. See co(1)
 for details about -T, -V, -x and -z. Otherwise, all
 options of diff(1) that apply to regular files are
 accepted, with the same meaning as for diff.

 If both rev1 and rev2 are omitted, rcsdiff compares the
 latest revision on the default branch (by default the
 trunk) with the contents of the corresponding working
 file. This is useful for determining what you changed
 since the last checkin.

 If rev1 is given, but rev2 is omitted, rcsdiff compares
 revision rev1 of the RCS file with the contents of the
 corresponding working file.

 If both rev1 and rev2 are given, rcsdiff compares revi-
 sions rev1 and rev2 of the RCS file.

 Both rev1 and rev2 may be given numerically or symboli-
 cally.

EXAMPLE
 The command

 rcsdiff f.c

 compares the latest revision on the default branch of the
 RCS file to the contents of the working file f.c.

ENVIRONMENT
 RCSINIT

 options prepended to the argument list, separated
 by spaces. See ci(1) for details.

DIAGNOSTICS
 Exit status is 0 for no differences during any comparison,
 1 for some differences, 2 for trouble.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.5; Release Date: 1993/11/03.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
 ci(1), co(1), diff(1), ident(1), rcs(1), rcsintro(1),
 rcsmerge(1), rlog(1)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

�
NAME
 rcsfile - format of RCS file

DESCRIPTION
 An RCS file’s contents are described by the grammar below.

 The text is free format: space, backspace, tab, newline,
 vertical tab, form feed, and carriage return (collec-
 tively, white space) have no significance except in
 strings. However, white space cannot appear within an id,
 num, or sym, and an RCS file must end with a newline.

 Strings are enclosed by @. If a string contains a @, it
 must be doubled; otherwise, strings can contain arbitrary
 binary data.

 The meta syntax uses the following conventions: ‘|’ (bar)
 separates alternatives; ‘{’ and ‘}’ enclose optional
 phrases; ‘{’ and ‘}*’ enclose phrases that can be repeated
 zero or more times; ‘{’ and ’}+’ enclose phrases that must
 appear at least once and can be repeated; Terminal symbols
 are in boldface; nonterminal symbols are in italics.

 rcstext ::= admin {delta}* desc {deltatext}*

 admin ::= head {num};
 { branch {num}; }
 access {id}*;
 symbols {sym : num}*;
 locks {id : num}*; {strict ;}
 { comment {string}; }
 { expand {string}; }
 { newphrase }*

 delta ::= num
 date num;
 author id;
 state {id};
 branches {num}*;
 next {num};
 { newphrase }*

 desc ::= desc string

 deltatext ::= num
 log string
 { newphrase }*
 text string

 num ::= {digit | .}+

 digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 id ::= {num} idchar {idchar | num}*

 sym ::= {digit}* idchar {idchar | digit}*

 idchar ::= any visible graphic character except special

 special ::= $ | , | . | : | ; | @

 string ::= @{any character, with @ doubled}*@

 newphrase ::= id word* ;

 word ::= id | num | string | :

 Identifiers are case sensitive. Keywords are in lower
 case only. The sets of keywords and identifiers can over-
 lap. In most environments RCS uses the ISO 8859/1 encod-
 ing: visible graphic characters are codes 041-176 and
 240-377, and white space characters are codes 010-015 and
 040.

 Dates, which appear after the date keyword, are of the
 form Y.mm.dd.hh.mm.ss, where Y is the year, mm the month
 (01-12), dd the day (00-31), hh the hour (00-23), mm the
 minute (00-59), and ss the second (00-60). Y contains
 just the last two digits of the year for years from 1900
 through 1999, and all the digits of years thereafter.
 Dates use the Gregorian calendar; times use UTC.

 The newphrase productions in the grammar are reserved for
 future extensions to the format of RCS files. No new-
 phrase will begin with any keyword already in use.

 The delta nodes form a tree. All nodes whose numbers con-
 sist of a single pair (e.g., 2.3, 2.1, 1.3, etc.) are on
 the trunk, and are linked through the next field in order
 of decreasing numbers. The head field in the admin node
 points to the head of that sequence (i.e., contains the
 highest pair). The branch node in the admin node indi-
 cates the default branch (or revision) for most RCS opera-
 tions. If empty, the default branch is the highest branch
 on the trunk.

 All delta nodes whose numbers consist of 2n fields (n>=2)
 (e.g., 3.1.1.1, 2.1.2.2, etc.) are linked as follows.
 All nodes whose first 2n-1 number fields are identical are
 linked through the next field in order of increasing num-
 bers. For each such sequence, the delta node whose number
 is identical to the first 2n-2 number fields of the deltas
 on that sequence is called the branchpoint. The branches
 field of a node contains a list of the numbers of the
 first nodes of all sequences for which it is a branch-
 point. This list is ordered in increasing numbers.

 The following diagram shows an example of an RCS file’s
 organization.

 Head
 |
 |
 v / \
 --------- / \
 / \ / \ | | / \ / \
 / \ / \ | 2.1 | / \ / \
 / \ / \ | | / \ / \
 /1.2.1.3\ /1.3.1.1\ | | /1.2.2.2\ /1.2.2.1.1.1\
 --------- --------- --------- --------- -------------
 ^ ^ | ^ ^
 | | | | |
 | | v | |
 / \ | --------- / \ |
 / \ | \ 1.3 / / \ |
 / \ ---------\ / / \-----------
 /1.2.1.1\ \ / /1.2.2.1\
 --------- \ / ---------
 ^ | ^
 | | |
 | v |
 | --------- |
 | \ 1.2 / |
 ----------------------\ /---------
 \ /
 \ /
 |
 |
 v

 \ 1.1 /
 \ /
 \ /
 \ /

IDENTIFICATION
 Author: Walter F. Tichy, Purdue University, West
 Lafayette, IN, 47907.
 Revision Number: 5.5; Release Date: 1994/03/17.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993, 1994 Paul Eggert.

SEE ALSO
 rcsintro(1), ci(1), co(1), ident(1), rcs(1), rcsclean(1),
 rcsdiff(1), rcsmerge(1), rlog(1)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

�
NAME
 rcsintro - introduction to RCS commands

DESCRIPTION
 The Revision Control System (RCS) manages multiple revi-
 sions of files. RCS automates the storing, retrieval,
 logging, identification, and merging of revisions. RCS is
 useful for text that is revised frequently, for example
 programs, documentation, graphics, papers, and form let-

 ters.

 The basic user interface is extremely simple. The novice
 only needs to learn two commands: ci(1) and co(1). ci,
 short for "check in", deposits the contents of a file into
 an archival file called an RCS file. An RCS file contains
 all revisions of a particular file. co, short for "check
 out", retrieves revisions from an RCS file.

 Functions of RCS
 o Store and retrieve multiple revisions of text. RCS
 saves all old revisions in a space efficient way.
 Changes no longer destroy the original, because the
 previous revisions remain accessible. Revisions
 can be retrieved according to ranges of revision
 numbers, symbolic names, dates, authors, and
 states.

 o Maintain a complete history of changes. RCS logs
 all changes automatically. Besides the text of
 each revision, RCS stores the author, the date and
 time of check-in, and a log message summarizing the
 change. The logging makes it easy to find out what
 happened to a module, without having to compare
 source listings or having to track down colleagues.

 o Resolve access conflicts. When two or more pro-
 grammers wish to modify the same revision, RCS
 alerts the programmers and prevents one modifica-
 tion from corrupting the other.

 o Maintain a tree of revisions. RCS can maintain
 separate lines of development for each module. It
 stores a tree structure that represents the ances-
 tral relationships among revisions.

 o Merge revisions and resolve conflicts. Two sepa-
 rate lines of development of a module can be coa-
 lesced by merging. If the revisions to be merged
 affect the same sections of code, RCS alerts the
 user about the overlapping changes.

 o Control releases and configurations. Revisions can
 be assigned symbolic names and marked as released,
 stable, experimental, etc. With these facilities,
 configurations of modules can be described simply
 and directly.

 o Automatically identify each revision with name,
 revision number, creation time, author, etc. The
 identification is like a stamp that can be embedded
 at an appropriate place in the text of a revision.
 The identification makes it simple to determine
 which revisions of which modules make up a given
 configuration.

 o Minimize secondary storage. RCS needs little extra
 space for the revisions (only the differences). If
 intermediate revisions are deleted, the correspond-
 ing deltas are compressed accordingly.

 Getting Started with RCS
 Suppose you have a file f.c that you wish to put under
 control of RCS. If you have not already done so, make an

 RCS directory with the command

 mkdir RCS

 Then invoke the check-in command

 ci f.c

 This command creates an RCS file in the RCS directory,
 stores f.c into it as revision 1.1, and deletes f.c. It
 also asks you for a description. The description should
 be a synopsis of the contents of the file. All later
 check-in commands will ask you for a log entry, which
 should summarize the changes that you made.

 Files in the RCS directory are called RCS files; the oth-
 ers are called working files. To get back the working
 file f.c in the previous example, use the check-out com-
 mand

 co f.c

 This command extracts the latest revision from the RCS
 file and writes it into f.c. If you want to edit f.c, you
 must lock it as you check it out with the command

 co -l f.c

 You can now edit f.c.

 Suppose after some editing you want to know what changes
 that you have made. The command

 rcsdiff f.c

 tells you the difference between the most recently
 checked-in version and the working file. You can check
 the file back in by invoking

 ci f.c

 This increments the revision number properly.

 If ci complains with the message

 ci error: no lock set by your name

 then you have tried to check in a file even though you did
 not lock it when you checked it out. Of course, it is too
 late now to do the check-out with locking, because another
 check-out would overwrite your modifications. Instead,
 invoke

 rcs -l f.c

 This command will lock the latest revision for you, unless
 somebody else got ahead of you already. In this case,
 you’ll have to negotiate with that person.

 Locking assures that you, and only you, can check in the
 next update, and avoids nasty problems if several people
 work on the same file. Even if a revision is locked, it
 can still be checked out for reading, compiling, etc. All
 that locking prevents is a check-in by anybody but the

 locker.

 If your RCS file is private, i.e., if you are the only
 person who is going to deposit revisions into it, strict
 locking is not needed and you can turn it off. If strict
 locking is turned off, the owner of the RCS file need not
 have a lock for check-in; all others still do. Turning
 strict locking off and on is done with the commands

 rcs -U f.c and rcs -L f.c

 If you don’t want to clutter your working directory with
 RCS files, create a subdirectory called RCS in your work-
 ing directory, and move all your RCS files there. RCS
 commands will look first into that directory to find
 needed files. All the commands discussed above will still
 work, without any modification. (Actually, pairs of RCS
 and working files can be specified in three ways: (a) both
 are given, (b) only the working file is given, (c) only
 the RCS file is given. Both RCS and working files may
 have arbitrary path prefixes; RCS commands pair them up
 intelligently.)

 To avoid the deletion of the working file during check-in
 (in case you want to continue editing or compiling),
 invoke

 ci -l f.c or ci -u f.c

 These commands check in f.c as usual, but perform an
 implicit check-out. The first form also locks the checked
 in revision, the second one doesn’t. Thus, these options
 save you one check-out operation. The first form is use-
 ful if you want to continue editing, the second one if you
 just want to read the file. Both update the identifica-
 tion markers in your working file (see below).

 You can give ci the number you want assigned to a checked
 in revision. Assume all your revisions were numbered 1.1,
 1.2, 1.3, etc., and you would like to start release 2.
 The command

 ci -r2 f.c or ci -r2.1 f.c

 assigns the number 2.1 to the new revision. From then on,
 ci will number the subsequent revisions with 2.2, 2.3,
 etc. The corresponding co commands

 co -r2 f.c and co -r2.1 f.c

 retrieve the latest revision numbered 2.x and the revision
 2.1, respectively. co without a revision number selects
 the latest revision on the trunk, i.e. the highest revi-
 sion with a number consisting of two fields. Numbers with
 more than two fields are needed for branches. For exam-
 ple, to start a branch at revision 1.3, invoke

 ci -r1.3.1 f.c

 This command starts a branch numbered 1 at revision 1.3,
 and assigns the number 1.3.1.1 to the new revision. For
 more information about branches, see rcsfile(5).

 Automatic Identification

 RCS can put special strings for identification into your
 source and object code. To obtain such identification,
 place the marker

 Id

 into your text, for instance inside a comment. RCS will
 replace this marker with a string of the form

 $Id: filename revision date time author state
 $

 With such a marker on the first page of each module, you
 can always see with which revision you are working. RCS
 keeps the markers up to date automatically. To propagate
 the markers into your object code, simply put them into
 literal character strings. In C, this is done as follows:

 static char rcsid[] = "Id";

 The command ident extracts such markers from any file,
 even object code and dumps. Thus, ident lets you find out
 which revisions of which modules were used in a given pro-
 gram.

 You may also find it useful to put the marker Log into
 your text, inside a comment. This marker accumulates the
 log messages that are requested during check-in. Thus,
 you can maintain the complete history of your file
 directly inside it. There are several additional identi-
 fication markers; see co(1) for details.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.3; Release Date: 1993/11/03.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
 ci(1), co(1), ident(1), rcs(1), rcsdiff(1), rcsintro(1),
 rcsmerge(1), rlog(1)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

�
NAME
 rcsmerge - merge RCS revisions

SYNOPSIS
 rcsmerge [options] file

DESCRIPTION
 rcsmerge incorporates the changes between two revisions of
 an RCS file into the corresponding working file.

 Pathnames matching an RCS suffix denote RCS files; all
 others denote working files. Names are paired as
 explained in ci(1).

 At least one revision must be specified with one of the
 options described below, usually -r. At most two revi-
 sions may be specified. If only one revision is speci-
 fied, the latest revision on the default branch (normally

 the highest branch on the trunk) is assumed for the second
 revision. Revisions may be specified numerically or sym-
 bolically.

 rcsmerge prints a warning if there are overlaps, and
 delimits the overlapping regions as explained in merge(1).
 The command is useful for incorporating changes into a
 checked-out revision.

OPTIONS
 -A Output conflicts using the -A style of diff3(1), if
 supported by diff3. This merges all changes lead-
 ing from file2 to file3 into file1, and is usually
 the best choice for merging. This option is the
 default if diff3 supports it.

 -E, -e These options specify conflict styles that generate
 less information than -A. See diff3(1) for
 details. If diff3 does not support -A, then -E is
 the default if it is supported, and -e is other-
 wise.

 -ksubst
 Use subst style keyword substitution. See co(1)
 for details. For example, -kk -r1.1 -r1.2 ignores
 differences in keyword values when merging the
 changes from 1.1 to 1.2.

 -p[rev]
 Send the result to standard output instead of over-
 writing the working file.

 -q[rev]
 Run quietly; do not print diagnostics.

 -r[rev]
 Merge with respect to revision rev. Here an empty
 rev stands for the latest revision on the default
 branch, normally the head.

 -T This option has no effect; it is present for com-
 patibility with other RCS commands.

 -V Print RCS’s version number.

 -Vn Emulate RCS version n. See co(1) for details.

 -xsuffixes
 Use suffixes to characterize RCS files. See ci(1)
 for details.

 -zzone Use zone as the time zone for keyword substitution.
 See co(1) for details.

EXAMPLES
 Suppose you have released revision 2.8 of f.c. Assume
 furthermore that after you complete an unreleased revision
 3.4, you receive updates to release 2.8 from someone else.
 To combine the updates to 2.8 and your changes between 2.8
 and 3.4, put the updates to 2.8 into file f.c and execute

 rcsmerge -p -r2.8 -r3.4 f.c >f.merged.c

 Then examine f.merged.c. Alternatively, if you want to

 save the updates to 2.8 in the RCS file, check them in as
 revision 2.8.1.1 and execute co -j:

 ci -r2.8.1.1 f.c
 co -r3.4 -j2.8:2.8.1.1 f.c

 As another example, the following command undoes the
 changes between revision 2.4 and 2.8 in your currently
 checked out revision in f.c.

 rcsmerge -r2.8 -r2.4 f.c

 Note the order of the arguments, and that f.c will be
 overwritten.

ENVIRONMENT
 RCSINIT
 options prepended to the argument list, separated
 by spaces. See ci(1) for details.

DIAGNOSTICS
 Exit status is 0 for no overlaps, 1 for some overlaps, 2
 for trouble.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.5; Release Date: 1993/11/03.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
 ci(1), co(1), ident(1), merge(1), rcs(1), rcsdiff(1),
 rcsintro(1), rlog(1), rcsfile(5)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

�
NAME
 rlog - print log messages and other information about RCS
 files

SYNOPSIS
 rlog [options] file ...

DESCRIPTION
 rlog prints information about RCS files.

 Pathnames matching an RCS suffix denote RCS files; all
 others denote working files. Names are paired as
 explained in ci(1).

 rlog prints the following information for each RCS file:
 RCS pathname, working pathname, head (i.e., the number of
 the latest revision on the trunk), default branch, access
 list, locks, symbolic names, suffix, total number of revi-
 sions, number of revisions selected for printing, and
 descriptive text. This is followed by entries for the
 selected revisions in reverse chronological order for each
 branch. For each revision, rlog prints revision number,
 author, date/time, state, number of lines added/deleted
 (with respect to the previous revision), locker of the
 revision (if any), and log message. All times are dis-
 played in Coordinated Universal Time (UTC) by default;

 this can be overridden with -z. Without options, rlog
 prints complete information. The options below restrict
 this output.

 -L Ignore RCS files that have no locks set. This is con-
 venient in combination with -h, -l, and -R.

 -R Print only the name of the RCS file. This is conve-
 nient for translating a working pathname into an RCS
 pathname.

 -h Print only the RCS pathname, working pathname, head,
 default branch, access list, locks, symbolic names,
 and suffix.

 -t Print the same as -h, plus the descriptive text.

 -N Do not print the symbolic names.

 -b Print information about the revisions on the default
 branch, normally the highest branch on the trunk.

 -ddates
 Print information about revisions with a checkin
 date/time in the ranges given by the semicolon-
 separated list of dates. A range of the form d1<d2 or
 d2>d1 selects the revisions that were deposited
 between d1 and d2 exclusive. A range of the form <d
 or d> selects all revisions earlier than d. A range
 of the form d< or >d selects all revisions dated later
 than d. If < or > is followed by = then the ranges
 are inclusive, not exclusive. A range of the form d
 selects the single, latest revision dated d or ear-
 lier. The date/time strings d, d1, and d2 are in the
 free format explained in co(1). Quoting is normally
 necessary, especially for < and >. Note that the sep-
 arator is a semicolon.

 -l[lockers]
 Print information about locked revisions only. In
 addition, if the comma-separated list lockers of login
 names is given, ignore all locks other than those held
 by the lockers. For example, rlog -L -R -lwft RCS/*
 prints the name of RCS files locked by the user wft.

 -r[revisions]
 prints information about revisions given in the comma-
 separated list revisions of revisions and ranges. A
 range rev1:rev2 means revisions rev1 to rev2 on the
 same branch, :rev means revisions from the beginning
 of the branch up to and including rev, and rev: means
 revisions starting with rev to the end of the branch
 containing rev. An argument that is a branch means
 all revisions on that branch. A range of branches
 means all revisions on the branches in that range. A
 branch followed by a . means the latest revision in
 that branch. A bare -r with no revisions means the
 latest revision on the default branch, normally the
 trunk.

 -sstates
 prints information about revisions whose state
 attributes match one of the states given in the comma-
 separated list states.

 -w[logins]
 prints information about revisions checked in by users
 with login names appearing in the comma-separated list
 logins. If logins is omitted, the user’s login is
 assumed.

 -T This option has no effect; it is present for compati-
 bility with other RCS commands.

 -V Print RCS’s version number.

 -Vn Emulate RCS version n when generating logs. See co(1)
 for more.

 -xsuffixes
 Use suffixes to characterize RCS files. See ci(1) for
 details.

 rlog prints the intersection of the revisions selected
 with the options -d, -l, -s, and -w, intersected with the
 union of the revisions selected by -b and -r.

 -zzone specifies the date output format, and specifies the
 default time zone for date in the -ddates option.
 The zone should be empty, a numeric UTC offset, or
 the special string LT for local time. The default
 is an empty zone, which uses the traditional RCS
 format of UTC without any time zone indication and
 with slashes separating the parts of the date; oth-
 erwise, times are output in ISO 8601 format with
 time zone indication. For example, if local time
 is January 11, 1990, 8pm Pacific Standard Time,
 eight hours west of UTC, then the time is output as
 1990/01/11 04:00:00 with -z, as 1990-01-11
 20:00:00-0800 with -zLT, and as 1990-01-11
 09:30:00+0530 with -z+0530.

EXAMPLES
 rlog -L -R RCS/*
 rlog -L -h RCS/*
 rlog -L -l RCS/*
 rlog RCS/*

 The first command prints the names of all RCS files in the
 subdirectory RCS that have locks. The second command
 prints the headers of those files, and the third prints
 the headers plus the log messages of the locked revisions.
 The last command prints complete information.

ENVIRONMENT
 RCSINIT
 options prepended to the argument list, separated
 by spaces. See ci(1) for details.

DIAGNOSTICS
 The exit status is zero if and only if all operations were
 successful.

IDENTIFICATION
 Author: Walter F. Tichy.
 Manual Page Revision: 5.7; Release Date: 1994/03/17.
 Copyright (C) 1982, 1988, 1989 Walter F. Tichy.
 Copyright (C) 1990, 1991, 1992, 1993, 1994 Paul Eggert.

SEE ALSO
 ci(1), co(1), ident(1), rcs(1), rcsdiff(1), rcsintro(1),
 rcsmerge(1), rcsfile(5)
 Walter F. Tichy, RCS--A System for Version Control,
 Software--Practice & Experience 15, 7 (July 1985),
 637-654.

BUGS
 The separator for revision ranges in the -r option used to
 be - instead of :, but this leads to confusion when sym-
 bolic names contain -. For backwards compatibility rlog
 -r still supports the old - separator, but it warns about
 this obsolete use.

