

UNIVERSITY OF TECHNOLOGY,
SYDNEY

SCHOOL OF ELECTRICAL

ENGINEERING

THESIS 2

Report Submitted in Partial Fulfilment
of the Requirements for the Degree of

Bachelor of Engineering (UTS) in
Computer Systems Engineering

Congestion Control in Wide-Area
TCP Networks using BONeS

Matthew Gream (90061060) - <M.Gream@uts.edu.au>
Academic Supervisor: Tamara Ginige
Spring, 1995

PREFACE

This thesis has been carried out in Partial Fulfilment of the Requirements for the
Degree of Bachelor of Engineering (UTS) in Computer Systems Engineering. The
thesis is project based and carried out as the final stage in the degree course. In
essence, it acts as the culmination of skill and knowledge obtained during the degree.

The thesis is partitioned into two subjects, each being a semester in length. The first
subject, Thesis 1, consisted of an investigation and analysis resulting in a
requirements definition for the work to be carried out in the second subject, Thesis 2.
The report generated as part of Thesis 1, detailing the investigation, project plan and
initial design, is appended to this report for reference purposes. During Thesis 2, the
work towards the objectives identified in Thesis 1 was carried out, and this report
specifically addresses this work, and goals.

This work is concerned with the examination of Wide-Area TCP congestion control
using the BONeS modelling and simulation package. As such, it required the
construction of an environment within which the models and simulations could be
built and executed. This construction consumes a significant part of the work, more so
in light of the inability to complete work in the second part. In the second part, issues
relating to Wide-Area TCP congestion control were examined, with models and
simulations devised to pursue these issues. The intended simulations could not be run
and analysed, so the work consists of specifications for the models and simulations,
and the related discussion and expected results.

The inability to complete all objectives was due to the fact that this particular thesis
was subject to a set of extraordinary events. A situation developed in which BONeS,
around which this thesis is based and heavily dependant upon, became unavailable for
use. Therefore, this prevented the core objectives of the work being attained, along
with delaying final completion and causing personal distress. These events are
documented as part of this report.

As a result, there are two significant achievements in this work. The first achievement
is a well designed, fully documented, BONeS environment, specially constructed to
support simulations utilising the Transmission Control Protocol, but with sufficient
modularity to be used elsewhere. The second achievement is the identification and
specification of Wide-Area TCP congestion control simulation scenarios, complete
with expected results.

 i

ACKNOWLEDGMENTS

I was assisted by a number of people during my execution of this work, and to them I
must extend my personal gratitude.

First and foremost, I must thank my thesis supervisor Tamara Ginige. She was
prompt, efficient and complete in answering all queries and issues that I presented to
her, especially during the unfortunate circumstances that disrupted the work. As such,
there were one or two occasions where I was considerably distressed, and I thank her
for the continual patience and support she displayed.

Geoff Ingram (“Jellybean”) deserves special mention for his hard work in attempting
to resolve the problems that persisted with BONeS, and for having to put up with the
absurd Comdisco policy that prevented licence renewals. His quick replies and
continual status reports were refreshing.

I must thank other UTS staff, notably Warwick Symons, for copies of BONeS
manuals, and Peter Yardley, for laboratory facilities on Level 22, for their assistance.

Mention must be made of my employer, Jtec (R&D) Pty, Ltd for providing the type of
flexible working hours and environment supportive of part time students.

And finally, a thank you to all the other people that are not mentioned here; this
includes personal friends and associates, some of which had to put up with my
dedication to work, occasional distress and partial reclusiveness.

 ii

ABSTRACT

Wide-Area Networks (WANs) are changing in character, but the Transmission
Control Protocol’s (TCP) congestion control mechanisms have remained
fundamentally the same. This new character is suspected to impact upon the
performance of TCP congestion control. This work uses the Block Oriented Network
Simulator (BONeS) package to construct models representative of such new
environments, and perform simulations involving scenarios of interest.

The work consists of two parts, the completion of which was upset due to unforseen
problems with the BONeS package.

In the first part of this thesis, a number of generic and extensible components are
constructed for use in modelling and simulating Wide-Area TCP Networks using the
BONeS package. These components include Hosts, Traffic Generators and LANs that
further decompose into OSI based modules, including Datalink Layers, Network
Layers and Transport Layers. An implementation of the Transmission Control
Protocol (TCP) as used in BSD 4.4 / Net3 was carried out and forms part of this.

The BONeS environment was constructed, and complete design and implementation
details are provided.

The second part of this thesis is concerned with modelling and simulating Wide-Area
TCP congestion control scenarios by using these components with the BONeS
package. There are five scenarios in total. The first two examine the basic behaviour
of the TCP congestion control. The third looks at the effects of multiple paths and
dynamic routing in complex WANs, the fourth examines the effects of WAN
overloading and TCP congestion control’s minimum window size, and the fifth
questions the effects of changing WAN traffic characteristics. These last three
scenarios are considered potential concerns for contemporary WAN environments.

Models and simulations were developed and specified, including a treatment of our
expectations in terms of gathered results. However, no simulations could be executed
due to the unforseen circumstances that occurred with the BONeS software. These
problems are documented as part of this work.

From the expectations, we find that there is justifiable concern for the performance of
TCP congestion control in these new WAN environments. This calls for more detailed
investigation, along with the development and assessment of solutions. Several
potential directions are discussed in this respect.

 iii

CONTENTS

PREFACE... I

ACKNOWLEDGMENTS ..II

ABSTRACT... III

CONTENTS ...IV

LIST OF FIGURES ...VI

LIST OF TABLES... VIII

LIST OF ABBREVIATIONS .. X

BACKGROUND, APPROACH AND SCOPE OF WORK1

1. BACKGROUND...1
1.1. Congestion Avoidance and Control..1
1.2. Transmission Control Protocol (TCP) ...2
1.3. Congestion Avoidance and Control in TCP ...3
1.4. Modelling and Simulations...4
1.5. Block Oriented Network Simulator (BONeS) ...5
1.6. Wide-Area Networks...6

2. INVESTIGATION CONCERNS AND OBJECTIVES ...7
3. THESIS 1 ACTIVITY ...8
4. THESIS 2 ACTIVITY (INCLUDING PROBLEMS WITH BONES SOFTWARE)8

PART 1. DEVELOPMENT OF THE SIMULATION ENVIRONMENT12

1. INTRODUCTION..12
2. DESIGN ...13

2.1. Strategies ..13
2.2. Architecture ..15
2.3. Primary Modules ..25
2.4. Miscellaneous Modules ..80
2.5. Components ..86

3. IMPLEMENTATION ...90
3.1. Strategies ..90
3.2. Architecture ..91
3.3. Modules ..98
3.4. Components ..123
3.5. Usage Notes..134

4. TESTING..141
4.1. Overview...141
4.2. Summary ...141

PART 2. CONSTRUCTION, EXECUTION AND ANALYSIS OF
SIMULATIONS ...148

 iv

1. INTRODUCTION..148
2. SIMULATION STRATEGIES..148
3. SIMULATION SCENARIOS...149

3.1. Single TCP Conversation ...149
3.2. Multiple TCP Conversations through bottleneck WAN Router....................165
3.3. Single TCP Conversation in Multiple-Path, Dynamically Routed WAN......179
3.4. Multiple TCP conversations overloading long-haul WAN Link...................195
3.5. Fluctuating traffic on TCP conversations through bottleneck long -haul WAN
Link 209

CONCLUSIONS ..213

FUTURE DIRECTIONS...215

REFERENCES...216

APPENDIX 1. DETAILED BONES DESIGN ..A1-1

1. DATA STRUCTURES...A1-2
2. PRIMARY MODULES..A1-3
3. MISCELLANEOUS MODULES..A1-94

APPENDIX 2. DETAILED BONES IMPLEMENTATIONA2-1

1. OVERVIEW ..A2-2
2. PRIMARY MODULES..A2-3
3. MISCELLANEOUS MODULES..A2-126

APPENDIX 3. THESIS 1 REPORT...A3-1

 v

LIST OF FIGURES
FIGURE 1-2.1. FUNDAMENTAL NETWORK COMPONENTS ..16
FIGURE 1-2.2. OSI MODEL: LAYERING CONCEPT...18
FIGURE 1-2.3. OSI MODEL: MESSAGE PRIMITIVES...19
FIGURE 1-2.4. COMMUNICATIONS LINK ..20
FIGURE 1-2.5. END SYSTEM: HOST...21
FIGURE 1-2.6. END SYSTEM: TRAFFIC GENERATOR ..21
FIGURE 1-2.7. INTERMEDIATE SYSTEM: ROUTER ..22
FIGURE 1-2.8. MANAGEMENT ...22
FIGURE 1-2.9. MESSAGE PRIMITIVE STATE DIAGRAM...23
FIGURE 1-2.10. MESSAGE ENCAPSULATION RELATIONSHIP ..24
FIGURE 1-2.11. MESSAGE HIERARCHY ...24
FIGURE 1-2.12. DATALINK LAYER: CONTEXT DIAGRAM ..27
FIGURE 1-2.13. DATALINK LAYER: ARCHITECTURE ...31
FIGURE 1-2.14. NETWORK LAYER: CONTEXT DIAGRAM...34
FIGURE 1-2.15. NETWORK LAYER: ARCHITECTURE..39
FIGURE 1-2.16. TRANSPORT LAYER: CONTEXT DIAGRAM ..43
FIGURE 1-2.17. TRANSPORT LAYER: ARCHITECTURE ...48
FIGURE 1-2.18. NETWORK-ADAPTION LAYER: CONTEXT DIAGRAM.............................51
FIGURE 1-2.19. NETWORK-ADAPTION LAYER: ARCHITECTURE....................................55
FIGURE 1-2.20. TRANSPORT-ADAPTION LAYER: CONTEXT DIAGRAM57
FIGURE 1-2.21. TRANSPORT-ADAPTION LAYER: ARCHITECTURE61
FIGURE 1-2.22. ROUTING-MODULE: CONTEXT DIAGRAM...64
FIGURE 1-2.23. ROUTING-MODULE: ARCHITECTURE..68
FIGURE 1-2.24. GENERATOR: CONTEXT DIAGRAM ...71
FIGURE 1-2.25. MANAGEMENT: CONTEXT DIAGRAM ...76
FIGURE 1-2.26. SIMULATION COMPONENT..86
FIGURE 1-2.27. SIMULATION - MANAGEMENT COMPONENT ...86
FIGURE 1-2.28. SIMULATION - NETWORK COMPONENT ..87
FIGURE 1-2.29. NETWORK - COMMUNICATIONS LINK COMPONENT..............................87
FIGURE 1-2.30. NETWORK - END SYSTEM COMPONENT..87
FIGURE 1-2.31. NETWORK - HOST COMPONENT ...88
FIGURE 1-2.32. NETWORK - TRAFFIC GENERATOR COMPONENT88
FIGURE 1-2.33. NETWORK - INTERMEDIATE SYSTEM COMPONENT88
FIGURE 1-2.34. MODULE - DATALINK LAYER COMPONENT..89
FIGURE 1-2.35. MODULE - NETWORK LAYER COMPONENT ..89
FIGURE 1-2.36. MODULE - TRANSPORT LAYER COMPONENT..89
FIGURE 1-2.37. MODULE - NETWORK-ADAPTION LAYER COMPONENT89
FIGURE 1-2.38. MODULE - TRANSPORT-ADAPTION LAYER COMPONENT......................90
FIGURE 1-2.39. MODULE - GENERATOR COMPONENT...90
FIGURE 1-2.40. MODULE - ROUTING-MODULE COMPONENT ..90
FIGURE 1-3.1. TOP LEVEL MODULES IN BONES ...93
FIGURE 1-3.2. NETWORK LAYER MODULE IN BONES ..94
FIGURE 1-3.2. NETWORK LAYER DATA ACCESSORS IN BONES95
FIGURE 1-3.4. DATA STRUCTURE HIERARCHY FOR INFORMATION ELEMENTS IN BONES96
FIGURE 1-3.5. DATA STRUCTURE HIERARCHY FOR MESSAGES IN BONES96

 vi

FIGURE 1-3.6. DATALINK LAYER MODULE ...100
FIGURE 1-3.7. NETWORK LAYER: MODULE ...103
FIGURE 1-3.8. TRANSPORT LAYER: MODULE..106
FIGURE 1-3.9. NETWORK-ADAPTION LAYER MODULE..108
FIGURE 1-3.10. TRANSPORT-ADAPTION LAYER MODULE...110
FIGURE 1-3.11. ROUTING-MODULE MODULE ...113
FIGURE 1-3.12. GENERATOR MODULE..115
FIGURE 1-3.13. MANAGEMENT MODULE ..117
FIGURE 1-3.14. HOST COMPONENT...123
FIGURE 1-3.15. TRAFFIC COMPONENT ..125
FIGURE 1-3.16. LINK COMPONENT..127
FIGURE 1-3.17. ROUTER COMPONENT ..128
FIGURE 1-3.18. LAN COMPONENT ...129
FIGURE 1-3.19. LAN -- TRAFFIC COMPONENT..131
FIGURE 1-3.20. SIMULATION MANAGEMENT COMPONENT ...133
FIGURE 2-3.1. SIMULATION MODEL: SINGLE TCP CONVERSATION LAN150
FIGURE 2-3.2. SIMULATION TOPOLOGY: SINGLE TCP CONVERSATION LAN..............151
FIGURE 2-3.3. SIMULATION CONFIG: SINGLE TCP CONVERSATION LAN...................155
FIGURE 2-3.4. SIMULATION MODEL: MULTIPLE TCP CONVERSATION WAN166
FIGURE 2-3.5. SIMULATION TOPOLOGY: MULTIPLE TCP CONVERSATION WAN........169
FIGURE 2-3.6. SIMULATION MODEL: SINGLE TCP CONVERSATION WAN..................181
FIGURE 2-3.7. SIMULATION TOPOLOGY: SINGLE TCP CONVERSATION WAN184
FIGURE 2-3.8. SIMULATION MODEL: MULTIPLE TCP CONVERSATION L-WAN196
FIGURE 2-3.9. SIMULATION TOPOLOGY: MULTIPLE TCP CONVERSATION L-WAN....198
FIGURE 2-3.10. SIMULATION MODEL: MULTIPLE TCP CONVERSATION F-WAN........210

 vii

LIST OF TABLES
TABLE 1-2.1. DATALINK LAYER: ENTITY RELATIONSHIPS...27
TABLE 1-2.2. DATALINK LAYER: DATA RELATIONSHIPS ..28
TABLE 1-2.3. DATALINK LAYER: PARAMETERS..28
TABLE 1-2.4. NETWORK LAYER: DATA RELATIONSHIPS...34
TABLE 1-2.5. NETWORK LAYER: DATA RELATIONSHIPS...35
TABLE 1-2.6. NETWORK LAYER: PARAMETERS ..35
TABLE 1-2.7. TRANSPORT LAYER: ENTITY RELATIONSHIPS..43
TABLE 1-2.8. TRANSPORT LAYER: DATA RELATIONSHIPS ..44
TABLE 1-2.9. TRANSPORT LAYER: PARAMETERS..44
TABLE 1-2.10. NETWORK-ADAPTION LAYER: ENTITY RELATIONSHIPS51
TABLE 1-2.11. NETWORK-ADAPTION LAYER: DATA RELATIONSHIPS...........................52
TABLE 1-2.12. NETWORK-ADAPTION LAYER: PARAMETERS ..52
TABLE 1-2.13. TRANSPORT-ADAPTION LAYER: ENTITY RELATIONSHIPS......................57
TABLE 1-2.14. TRANSPORT-ADAPTION LAYER: DATA RELATIONSHIPS58
TABLE 1-2.15. TRANSPORT-ADAPTION LAYER: PARAMETERS......................................58
TABLE 1-2.16. ROUTING-MODULE: ENTITY RELATIONSHIPS ..64
TABLE 1-2.17. ROUTING-MODULE: DATA RELATIONSHIPS...65
TABLE 1-2.18. ROUTING-MODULE: PARAMETERS ..65
TABLE 1-2.19. GENERATOR: ENTITY RELATIONSHIPS...71
TABLE 1-2.20. GENERATOR: DATA RELATIONSHIPS ...71
TABLE 1-2.21. GENERATOR: PARAMETERS...72
TABLE 1-2.22. MANAGEMENT: ENTITY RELATIONSHIPS...76
TABLE 1-2.23. MANAGEMENT: DATA RELATIONSHIPS ...77
TABLE 1-2.24. MANAGEMENT: PARAMETERS...77
TABLE 1-2.25. STATISTICAL PARAMETER: FUNCTIONS ...81
TABLE 1-2.26. TRANSPORT LAYER TCP PROBE: PARAMETERS....................................82
TABLE 1-2.27. TRANSPORT LAYER TCP PROBE: DATA TYPES.....................................83
TABLE 1-2.28. NETWORK LAYER QUEUE PROBE: PARAMETERS...................................84
TABLE 1-2.29. NETWORK LAYER QUEUE PROBE: DATA TYPES....................................85
TABLE 1-3.1. DATALINK LAYER: BONES PORTS ...98
TABLE 1-3.2. DATALINK LAYER: BONES PARAMETERS ..99
TABLE 1-3.3. DATALINK LAYER: BONES DATA STRUCTURES.....................................99
TABLE 1-3.4. NETWORK LAYER: BONES PORTS..101
TABLE 1-3.5. NETWORK LAYER: BONES PARAMETERS...102
TABLE 1-3.6. NETWORK LAYER: BONES DATA STRUCTURES102
TABLE 1-3.7. TRANSPORT LAYER: BONES PORTS ...104
TABLE 1-3.8. TRANSPORT LAYER: BONES PARAMETERS ..105
TABLE 1-3.9. TRANSPORT LAYER: BONES DATA STRUCTURES.................................105
TABLE 1-3.10. NETWORK-ADAPTION LAYER: BONES PORTS....................................107
TABLE 1-3.11. NETWORK-ADAPTION LAYER: BONES PARAMETERS.........................107
TABLE 1-3.12. NETWORK-ADAPTION LAYER: BONES DATA STRUCTURES108
TABLE 1-3.13. TRANSPORT-ADAPTION LAYER: BONES PORTS109
TABLE 1-3.14. TRANSPORT-ADAPTION LAYER: BONES PARAMETERS109
TABLE 1-3.15. TRANSPORT-ADAPTION LAYER: BONES DATA STRUCTURES.............110
TABLE 1-3.16. ROUTING-MODULE: BONES PORTS..111

 viii

TABLE 1-3.17. ROUTING-MODULE: BONES PARAMETERS...112
TABLE 1-3.18. ROUTING-MODULE: DATA STRUCTURES...112
TABLE 1-3.19. GENERATOR: BONES PORTS ..114
TABLE 1-3.20. GENERATOR: BONES PARAMETERS ...114
TABLE 1-3.21. GENERATOR: BONES DATA STRUCTURES..115
TABLE 1-3.22. MANAGEMENT: BONES PARAMETERS ...116
TABLE 1-3.23. MANAGEMENT: BONES DATA STRUCTURES......................................117
TABLE 1-3.24. STATISTICAL PARAMETER: BONES DATA STRUCTURES.....................118
TABLE 1-3.25. TRANSPORT LAYER TCP PROBE: PORTS...119
TABLE 1-3.26. TRANSPORT LAYER TCP PROBE: BONES PARAMETERS119
TABLE 1-3.27. TRANSPORT LAYER TCP PROBE: TYPES ...120
TABLE 1-3.28. NETWORK LAYER QUEUE PROBE: PORTS..121
TABLE 1-3.29. NETWORK LAYER QUEUE PROBE: BONES PARAMETERS121
TABLE 1-3.30. NETWORK LAYER QUEUE PROBE: TYPES..121
TABLE 1-3.31. COMMON MODULES..122
TABLE 1-3.32. COMMON DATA STRUCTURES ...122
TABLE 1-3.33. HOST: PARAMETERS...124
TABLE 1-3.34. TRAFFIC: PARAMETERS ...126
TABLE 1-3.35. LINK: PARAMETERS ..127
TABLE 1-3.36. ROUTER: PARAMETERS ...128
TABLE 1-3.37. LAN: PARAMETERS ..130
TABLE 1-3.38. LAN -- TRAFFIC: PARAMETERS ..132
TABLE 1-3.39. SIMULATION -- MANAGEMENT: PARAMETERS133
TABLE 1-3.40. MANAGEMENT FILE: DESTINATION MODULES135
TABLE 1-3.41. MANAGEMENT FILE: COMMAND TYPES ..135
TABLE 1-3.42. MANAGEMENT FILE: EXAMPLE ...140

 ix

LIST OF ABBREVIATIONS

ACK Acknowledgment

AI/MD Additive-Increase Multiplicative-Decrease

ATM Asynchronous Transfer Mode

BONeS Block Oriented Network Simulator

BW*D Bandwidth-Delay Product

ECN Explicit Congestion Notification

ES End System

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol (V5)

IPv6 Internet Protocol (V6)

IS Intermediate System

LAN Local Area Network

NNTP Network News Transfer Protocol

OSI Open Systems Interconnection

RED Random Early Detection

RFC Request For Comments

RTT Round-Trip Time

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

Telnet Network Terminal Protocol

WAN Wide-Area Network

WWW World Wide Web

 x

BACKGROUND, APPROACH AND SCOPE OF WORK

The work in this Thesis covers several fields. The following sections are intended to
provide background information on these fields in order to summarise basic concepts
from the field, and to capture the aspects that are relevant to this work. Although
provided in summary, references can be pursued for more detailed treatment.

The investigation and research for this work was performed as part of the activity
carried out in Thesis 1, the report for which is provided in Appendix 3. Thesis 1 also
involved the identification of issues and objectives to be pursued in this work. A
summary of Thesis 1 activity is also provided in the following sections.

To describe the events that occurred during Thesis 2, especially those that disrupted
the completion of this work, a summary of Thesis 2 activity is also given.

1. Background

1.1. Congestion Avoidance and Control
Congestion control is concerned with the allocation and use of resources in a network
(Jain, 1990). Resources are in demand by users of the network, however a resource
has a finite capacity. The demand for these resources must be controlled otherwise
over-demand occurs, at which point the network becomes congested. The two primary
resources in a network are transmission links, with finite bandwidth and propagation
delay characteristics, and queues, with limited buffering space.

Congested networks drop packets, and therefore result in increased retransmission
levels and lower throughput. The goal of a congestion control mechanism is to attempt
to prevent congestion from occurring, but if it does occur then be able to recover from
it. There are many desirable properties that a congestion control mechanism should
have, such as being fair, responsive and having low overhead (Jain, 1990).

In a strict sense, there are two parts to congestion control: avoidance, and control.

Congestion avoidance is a proactive measure. It attempts to prevent congestion
occurring by ensuring that the demand for network resources does not exceed the
capacity of the network resources. This may take the form of ensuring that the
maximum rate of transmission for packets never exceeds the maximum rate at which
the network can transport them. This rate is a function of the network’s bandwidth,
propagation delay, and queue characteristics as they are shared between multiple
users.

However, congestion can and does occur, so congestion control must instrumented at
some point. This is a reactive measure, and it attempts to recover from congestion. For
example, this may take the form of instructing offending transmitters to reduce the
rate at which they supply packets to the network. In the case of Frame Relay networks,
Backward Explicit Congestion Notification (BECN) information is used to inform a
Frame Relay Access Device that it should reduce its transmission rate (Stallings,
1993).

 1

Throughout this work, the term “congestion control” refers both to avoidance and
control except where otherwise stated.

Congestion control is implemented within the network, and can be placed in the end
systems, intermediate systems or distributed between both. In the case of TCP
congestion control, the end systems, and particularly the transmitters, carry out the
implementation. The intermediate systems and end system receivers play a passive
role. However, in the Internet Protocol (IP) (Postel, 1981a) suite, the Internet Control
Message Protocol (ICMP) (Postel, 1981b) defines a “Source Quench” indication that
is used, but is now considered inappropriate to do so, to indicate that a particular
transmitter should slow down. This is a case of an intermediate point participating in
congestion control.

A solution acceptable for one environment is not necessarily acceptable for another
environment, or for that original environment after evolution has taken place. The
topic has been given considerable coverage, more recent in the context of
Asynchronous Transfer Mode (ATM) Networks (Stallings, 1993).

1.2. Transmission Control Protocol (TCP)
The Transmission Control Protocol (TCP) (Postel, 1981c) is a full duplex, connection
oriented protocol that provides a reliable delivery service for unstructured bytes across
an unreliable medium. Typically, this underlying medium is a connectionless network
layer, which in practice is usually the Internet Protocol (Postel, 1981a). Both protocols
were designed to work together, however TCP makes little assumptions about its
delivery medium, and can work with a variety of media.

The TCP is a sliding window protocol. Each transmitted byte is associated with a
sequence number, and receivers can only accept bytes with sequence numbers that lie
within the range of a current receive window. Upon reception of bytes with associated
sequence numbers, the receiver generates acknowledgements for the transmitter.
When the transmitter receives acknowledgements and “window advertisements”, it
can advance and expand the transmit window, thereby allowing it to send more bytes.
The window ensures that bytes with old or duplicate sequence numbers are detected
and rejected.

The transmitter detects that bytes have been lost in the network, due to errors or
congestion, by sensing a time out on the reception of acknowledgements for that data
(a retransmission timer). More recent implementations of TCP have a fast retransmit
procedure that detects three consecutive duplicate acknowledgements, assumes that
loss has occurred, and pre-empts the retransmission timer. Either way, the transmitter
carries out retransmission by resending all outstanding data from the current window.
This is referred to as a Go-Back-N error recovery strategy (Stallings, 1993).

The receiver is capable of receiving segments out of order, in which case it enqueues
and reassembles them upon the arrival of subsequent segments that fill in the gaps.

In addition to this data transfer behaviour; the protocol includes procedures for
connection establishment and termination, using a handshaking protocol.

 2

1.3. Congestion Avoidance and Control in TCP
The original specification for the Transmission Control Protocol (TCP) did not
include congestion control measures; as the problem was not recognised at the time. It
was not until Van Jacobson’s seminal work (Jacobson, 1988), with the exception of
(Nagle, 1984) and (Nagle, 1987) that serious focus was given to the issue. His
proposed congestion avoidance and control measures form the basis of the current
TCP congestion control, and is specified as a mandatory requirement for Internet
Hosts (Braden, 1988).

Since that original work, considerable attention has been given to the topic.

Analysis of existing
TCP congestion control
algorithms

(Brakmo & Peterson, 1995), (Danzig et al, 1995),
(Floyd, 1995), (Jacobson, 1990), (Wang, 1992),
(Zhang et al, 1991)

New/modified TCP
congestion control
algorithms.

(Brakmo et al, 1994), (Wang, ??), (Wang &
Crowcroft, 1991), (Wang & Crowcroft, 1992)

Focus on TCP
congestion control and
network participation.

(Floyd, 1991a), (Floyd, 1991b), (Floyd, 1994),
(Floyd & Jacobson, 1992), (Floyd & Jacobson,
1993)

Sally Floyd is notable for her extensive work encompassing the end system behaviour
of TCP, along with the participation of the network. In general, the majority of the
work is focused upon the specific congestion avoidance and control algorithm used by
TCP, either to look at the existing mechanism or to suggest modifications and
alternatives. Although window based, attention has been given to rate based control
(Huynh et al, 1991).

This work is based upon the BSD 4.4 / Net3 TCP implementation (Berkeley Software
Distribution, 1994). It uses the original Van Jacobson algorithm (Jacobson, 1988)
with a few modifications (such as, “fast retransmit” and “fast recovery”) (Jacobson,
1990). A brief summary of TCP congestion control is provided in the following
paragraphs, but (Stevens & Wright, 1994) should be consulted for a more detailed
examination.

TCP congestion control is based upon closed loop feedback. It limits the
amount of data that can be sent into the network through a congestion window,
and increases the congestion window as the conversation progresses, therefore
placing ever more data into the network. At some point, loss occurs due to
congestion, and the congestion window is reduced in value.

More specifically, the TCP sender maintains a state variable called the
congestion window. It always transmits the minimum of the receiver’s
advertised window, and the congestion window. Initially, the congestion
window is set to one segment, and it doubles each round trip time (i.e.
exponential increase) as acknowledgements are received back through the
network. The exponential increase occurs until the congestion window reaches
the value of another state variable: the slow start threshold. Initially, the slow

 3

start threshold is set to the maximum possible window. This first phase is
known as the slow start phase (Jacobson, 1988)

When the congestion window is greater than the slow start threshold, it
increases by one segment each round trip time (i.e. linear increase) in an
attempt to slowly probe for the networks actual operating point. This operating
point is where maximum utilisation of the network’s resource is being made,
and therefore where the onset of congestion occurs. This second phase is
known as the congestion avoidance phase (Jacobson, 1988).

Congestion is detected by the loss of packets in the network. The receiver
picks this up by a retransmission timeout, or through the reception of three
consecutive duplicate acknowledgements (the “fast retransmit” algorithm
(Jacobson, 1990)), which suggests that a segment has been lost (but it could
have been out of order). When this occurs, the slow start threshold is reduced
to one half the current congestion window, as the congestion window is
assumed to have been at valid operational point before its last doubling. The
congestion window is eventually set to the same value as the slow start
threshold, but may be temporarily increased to instrument a “fast recovery”
algorithm (Stevens & Wright, 1994) (which attempts to keep data in transit
after loss has occurred).

If the sender has been idle for more than one round trip time, the congestion
window is set to a size of one segment; since without recent feedback, the state
of the network is not presumed known.

During slow start the sender is rapidly increasing its congestion window in an
attempt to quickly reach a presumed stable operating point: the slow start
threshold. Having reached the slow start threshold, it must slowly probe the
network until maximum utilisation occurs; i.e. the point at which congestion
occurs. Because of this cyclic nature, the transmitter oscillates around the
operating point. If the sender increased the congestion window linearly from
one, convergence would take too long; if it increased the congestion window
exponentially all the time, losses would be high.

This algorithm is part of a class referred to as “Additive Increase, Multiplicative
Decrease” algorithms. These perform additive increases when gaining resources
(increasing the congestion window linearly), by multiplicative decreases when
releasing resources (decreasing the congestion window by factor of two reduction).
Hence, high bandwidth users lose proportionally on the descent, but gain equally on
the ascent, leading to a fair distribution of bandwidth (Chiu & Jain, 1989).

Implicit in the above discussion is the centrality of the round-trip times to the
mechanisms. Feedback from the network is on a per round-trip time basis, therefore
window modifications occur with this period. Retransmission timeouts also rely upon
estimated round-trip times.

1.4. Modelling and Simulations
For many reasons, it is often not possible to examine an issue as it occurs in its real
problem space. In the case of network situations, it may be difficult to obtain actual
measurements, and when these measurements are obtained, the key material may be
obscured. In these cases, models and simulations are used to examine issues.

 4

The concern with modelling a problem is to ensure that the model is accurate,
especially when the model is going to be used as a basis from which analysis and
conclusions are made. The model is only intended to capture the critical defining
aspects of the problem. For example, in the case of a network situation, the concept of
a datagram may be modelled. However, the actual data in the datagram is not
required, only a notion of its length.

A simulation takes the static model and provides it with behaviour; it therefore turns a
static model into a dynamic model. The same validity concerns exist with simulations
as they do with models: the parameters used in the simulation most are valid and
representative.

In the context of Congestion Avoidance and Control, models and simulations have
been a primary tool for research, evidenced in (Floyd, 1991a) as an example.
Concerns about the validity of such models and simulations have been raised in
(Danzig, 1995).

1.5. Block Oriented Network Simulator (BONeS)
The Block Oriented Network Simulator (BONeS) is a software package that provides
an integrated environment for the modelling and simulation of networks1 (Comdisco
Systems Inc, 1993) (Shanmugan et al, 1988). It has four main aspects:

�� Data Structures -- Data Structures are used to hold information used within the
simulation. These include primitive types, such as REALs and INTEGERs, along
with constructed types, such as SETs and COMPOSITEs. BONeS organises Data
Structures in a hierarchy, where each Data Structure is a subtype of its parent, and
in the case of COMPOSITE types, also inherits fields from its parent. Users can
add and modify Data Structures using a Data Structure Editor.

�� Blocks -- Blocks are used to process Data Structures. A Block has a number of
input and output ports through which Data Structures can flow. Additional Data
Structures can be stored and accessed through parameters, similar to the concept of
function arguments. Users can add or modify Blocks using a Block Diagram
Editor. Blocks can be connected together, to pass Data Structures between each
other. BONeS provides a set of basic Primitive Blocks. When necessary, Primitive
Blocks can be constructed using the ‘C’ language.

�� Simulations -- Simulations are used to observe and capture information from the
dynamic operation of Blocks. A Simulation Module is constructed and executed
with set parameters, and through the use of “probes”, can be requested to capture
operating information. Simulations are configured (by the insertion of probes and
the specification of parameters) and executed using a Simulation Manager.

�� Post Processing -- Post Processing takes the information collected from a
Simulation and allows for it to be filtered, processing and converted into graphs.
These graphs are then used for analysis purposes.

1BONeS is even more general than this, it can be applied to many different problem
domains, which has included spread spectrum analysis.

 5

To carry out a simulation in BONeS, the user first defines the Data Structures to be
used, possibly including “packets” or other suitable representations from the problem
domain. Blocks are then constructed to operate upon the Data Structures and model
the problem, until a single Block encapsulates a model of the entire problem. This is
then defined to be the Simulation Module, which is configured with Probes. The
Probes capture Data Structures from an active simulation and write them to a file. The
simulation is executed, after which post processing is used to generate the necessary
graphs. Conclusions are then drawn based upon analysis of the results.

BONeS has a number of benefits. It is easy and fast to use, and allows for all aspects
of a simulation to be constructed in the one package. Iterations and variations of
simulations can be executed effortlessly. For advanced use, BONeS provides an
interface to the ‘C’ language. This allows for complex or specialised Blocks to be
implemented in ‘C’, which is generally much faster execution wise and potentially
much faster development wise, with a minor flexibility trade-off.

BONeS has been used before, both at the University of Technology, Sydney (UTS)
and in other research (Shanmugan, 1988).

1.6. Wide-Area Networks
Wide-Area Networks (WANs) consist of Local-Area Networks (LANs) connected
across large distances. Typically, the LANs contain network nodes that are
interconnected at a relatively high bandwidths; using media such as
Ethernet/IEEE802.3 (10Mbps), Token Ring/IEEE 802.2 (4-20Mbps) and FDDI
(100Mbps). The WAN connections are often at much lower bandwidths, typically
involving media such as DDS (48Kbps), ISDN (64Kbps), T1 (1.44Mbps) and E1
(2.048Mbps).

The Internet is perhaps the best example that can be used to illustrate WANs and
LANs. An example of such is the previous architecture at the University of
Technology, Sydney (UTS). It involved internal 10Mbps Ethernet LANs, internally
connected to each other at 10Mbps. A single external (WAN) connection was
available through a 126Kbps ISDN line (two 64Kbps B Channels, aggregated and
losing 2Kbps in overhead). This external connection was regularly operating at
maximum capacity, indicating that the addition of any new conversations would have
experienced congestion.

This is typical: the WAN is generally the bottleneck, and therefore where congestion
avoidance and control is primarily targeted (Jain, 1990). Furthermore, traffic profiles
on WANs are different from those on LANs (Cáceres et al, 1991). A LAN may be
characterised as having many short, bursty connections -- due to the nature of
interaction between client and server machines: file/image retrieval, electronic mail,
terminal sessions. A WAN, on the other hand, generally has sustained transactions (
e.g. file transfer) that last for longer periods of time (Paxson, 1993a).

The recent Internet, however, has seen a gradual change in traffic profiles due to the
increasing use of the World Wide Web (WWW). Its session protocol uses the TCP for
short requests and responses. Congestion control measures rely on network feedback
information, of which there is considerably less with such conversations.

 6

Characteristics of WAN traffic have received notable attention, of which significant
proportions have been carried out by Vern Paxson2.

2. Investigation Concerns and Objectives
After examination of the various fields relevant to the topic of this work, a few issues
of concern become apparent. Primarily, issues where chosen that are related to the
basic fundamentals of TCP congestion control as they are being challenged by the
evolving nature of Wide-Area Networks (WANs).

The following three issues were selected for attention, as they are considered
contemporary and relevant.

�� WANs are increasing in size and complexity. TCP conversations may now expect
to have subsequent segments traverse different paths, where previously most or all
segments would traverse a single path. This means that conversation round trip
times can vary significantly, and out of order delivery becomes common. The
performance of TCP congestion control may be adversely affected by changes in
these two factors.

�� WANs are increasing in utilisation. A WAN connection may now expect to carry
hundreds of simultaneous TCP conversations. With more conversations, each
conversation receives a smaller share of the available space in the connection. The
TCP congestion control has a minimum rate at which it sends segments into the
network. If the conversation is allocated a share smaller than this rate, high levels
of retransmissions may occur. This challenges the assumption that TCP congestion
control makes about the minimum capability of the network.

�� WANs are experiencing a change in traffic profiles. WAN connections are now
subject to may short and bursty transaction conversations due to the rising use of
the World Wide Web’s transaction oriented session protocol. These short and
bursty conversations do not exit for a time long enough to gain information on, and
therefore co-operative with, network conditions.

These are the three Wide-Area Network TCP congestion control issues under
investigation. However these are not the only objectives for this work. In addition, it is
an objective that the BONeS modules constructed to service these investigations are
presentable and re-usable in order to gain additional value from the work.

In summary, the following are the objectives for this thesis:

�� Construct a BONeS environment capable of modelling and simulating congestion
control issues in Wide-Area TCP Networks. This environment must be presentable
and re-usable.

�� Investigate several concerns relating to the nature of congestion control issues as
they occur in Wide-Area TCP Networks. These concerns are contemporary in
nature and have practical relevance.

2It is notable that Vern Paxon, Sally Floyd and Van Jacobson are associated with the
same research group at Lawrence Berkeley Laboratory.

 7

3. Thesis 1 Activity
Thesis 1 was concerned with the investigation and definition of work required for
Thesis 2. The abstract goal was to examine issues of congestion in Wide-Area
Networks, in terms of the Transmission Control Protocol. This would be carried out
by modelling and simulating with the BONeS package. Additional requirements were
that the environment constructed in BONeS should be of presentation quality, suitable
for re-use as a whole, or in part. This would add value to the results of Thesis 2.

The investigation covered an examination of the significant fields that intersected with
the topic, including, primarily, congestion control itself, in terms of basic philosophy,
theory and principles, but importantly as it occurred in the context of the Transmission
Control Protocol. Therefore, it required an understanding of the Transmission Control
Protocol, and issues particular to Wide-Area Networks. Finally, the generative issues
include Modelling, Simulation and the BONeS package itself.

Material examined included books, research papers, conference proceedings,
electronic publications, electronic mailing lists, newsgroups, software source code and
even consultation with experience practitioners (through email). The Thesis 1 report is
provided in Appendix 3 and it details the material examined (although it does lack
mention of software source code and consultation, because they occurred between
Thesis 1 and Thesis 2). The investigation provided the indication of the avenue that
needed to be pursued, and the elements required for that pursuit. This led to the
development of a number of specific objectives and, subsequently, the simulations to
executed and analysed.

The final step in Thesis 1 was to carry out an initial top-level design for all elements
of the work, specifically for the purpose of being able to gauge the time and effort
required for the work in Thesis 2. The result was a project plan, and a complete
picture of all aspects of work required, both primarily and ancillary.

After the submission of the Thesis 1 report, the BONeS package was used to
implement and simulate a portion of the design -- the Link -- as an effort in
familiarisation with the package. This signified the completion of all work in Thesis 1.

4. Thesis 2 Activity (including problems with BONeS
Software)
Thesis 2 was subject to extraordinary events. These events prevented the achievement
of the central objectives of this work, and at the same time caused personal disruption
and distress. These events are briefly documented in the following paragraphs.

Thesis 2 started in August 1995. The first one and a half weeks involved a redesign of
the BONeS modules, and a re-examination of the simulations that were to be
performed. In the time since the completion of Thesis 1, it had become apparent that
the work in Thesis 2 would be better served by a redesign: the altered design would
reduce the risk of problems, and further value-add to the end results of Thesis 2, in
that not only would the central objectives be reached, but the environment constructed
to reach the objectives would of such a nature that it could be re-used.

The implementation of the design was carried out over the last two weeks of August
1995, and through September 1995. The implementation proceeded faster than the

 8

original plan, which predicted completion in 8 weeks. However, it had slipped by one
and a half weeks due to the redesign. The original project plan provided for 2 weeks to
cover uncertainty, so this excess time was still within target.

On the 7th of October 1995, the implementation was almost complete -- the TCP ‘C’
implementation was two days from completion, and then a final two days were needed
for its integration and for cleaning up various other bits and pieces. However, upon
arriving at UTS, it was found that the BONeS software was unavailable (the licence
server was not operating). When still unavailable the next day, the following item of
mail was sent to Geoff Ingram.

From: Matthew Gream <mgream@heckle.ee.uts.EDU.AU>
To: geoffi@ee.uts.edu.au
Subject: BONeS/mozart.
Date: Sun, 08 Oct 1995 09:37:38 +1000

Hi Geoff,

I'm using BONeS on mozart for Thesis 2. As a result of the unfortunate
demise of schutz (as noted in a motd on mozart) it seems that BONeS is
an application that has suffered :

> mg(mozart).{~} bones
>
> Could not obtain license for feature "DESIGNER_FRAMEWORK", version 2.0,
> because cannot connect to license server.
>
> Exiting ...

Usage of this software is exceedingly critical for me (I'm a part time
student, so my main use is on the weekends), so is it possible for you
to give me an estimated downtime for schutz so that I can attempt to
try and schedule around the situation ? Otherwise, is it possible to
work around the problem ?

Much appreciated,

Matthew.

To fill in the time, work on the report was started, and manual verification of the
design, the implementation and the simulations was carried out in an attempt to ensure
that any potential problems would be averted. However, this week of unavailability
stretched into two weeks, and then three. A decision was made to fill in the time by
concentrating on documenting the design work. Then the following item of mail from
Geoff provided some hope.

From: geoffi@ee.uts.edu.au (Geoff Ingram)
Subject: BONeS
To: tamara (Tamara Ginige), tb (Teresa Buczkowska)
Date: Mon, 30 Oct 95 11:00:05 EST

I have just received the license transfer agreement fromn COMDISCO for SPW and
BONeS. It is now filled out and signed and faxed back to the US. I'm
uncertain as to how long it will take to receive the passcodes. I guess a few
days.

However, these few days extended further, and in the second week of November
1995, after 5 weeks of BONeS unavailability, it became apparent that it would not be
possible for the simulations to be carried out, there was just not enough time left --
this was then tempered by the following item of mail from Geoff providing more
uncertainty about the resolution of the problem.

 9

From: geoffi@ee.uts.edu.au (Geoff Ingram)
Subject: BONeS/SPW
To: tamara@ee.uts.edu.au (Tamara Ginige), tb@ee.uts.edu.au (Teresa Buczkowska)
Date: Tue, 14 Nov 95 13:28:27 EST
Resent-To: M.Gream@uts.edu.au
Resent-Date: Tue, 14 Nov 1995 13:59:29 +1000

Tamara, Teresa,
 The latest in the saga of BONeS/SPW;

The Australian agent for Comdisco now says that since we have not had software
maintenance for the above products over the last year we are not entitled
to transfer the license to another machine.
I have got very upset with them and have sent an email and fax to the U.S.
as I regard the agents in Australia as a bunch of ignorant #$%^!@#^*
If I receive no satisfaction from Comdisco I will discontinue support of
SPW/BONeS and install OPNET or other similar packages instead.
I have never before encountered such an attitude from a software vendor.

In an attempt to find a work around, I located information on software that could fool
the licence server into thinking that it was working on the correct machine. I provided
this software to Geoff, but his attempts to have it work failed, the licence software
was too smart. At this stage, a decision was made to postpone the presentation, in the
hope that when the BONeS problems were resolved, the remaining work could be
finalised. Over the next couple of weeks, this report was finalised to a point where all
information other than the implementation and simulations were documented. The
latter two were not completed due to the possibility of the BONeS software becoming
available at a later date.

In December 1995, I attempted to locate someone that would assist me by providing
Postscript files of my implementation, so that at least it was possible to document the
work that I had achieved. I found a very helpful person who offered to do this.

Hi Matthew,

You can put your blocks on our ftp site: makalu.theoinf.tu-ilmenau.de
under the directory pub/incoming. We can try to print your blocks in an
ps/eps file format. You then can fetch it back from our ftp-server.

I hope this will solve your problem.

Best regards

Ulrich Freund

Technical University Ilmenau

Due to other commitments, and the need for a break, I did not carry out any thesis
work for the first two weeks of December 1995. But on the 17th of December 1995, I
received the following mail from Geoff indicating that BONeS was available for use
for the last two weeks of December 1995.

Well, it works. When I got back from the reef there was a new mother board
waiting for me. So I swapped the EPROMS and fired it up and ran BONeS and
it's happy. If you're going to use it, use it quickly because the license
expires on 1st January 1996 and I'm not renewing it.

I determined that these two weeks would not be enough time to complete the
simulations in their entirety and to extract the necessary diagrams required for the
documentation, so a decision was made to finish the implementation and obtain the
diagrams over the week preceding Christmas 1995. I finished this task on Christmas

 10

Eve. For the week between Christmas and New Year of 1995, I was already
committed to a long-awaited holiday.

No work was performed during January 1996, due to personal commitments -- which
partially included moving house, amongst other things. At the end of January 1996,
contact with Tamara Ginige was resumed, and I decided to carry out a presentation on
the 4th of March 1996, illustrating the work that I had achieved thus far, and
emphasising my plans towards achieving the objectives that could not be obtained due
to the unavailability of BONeS. The last two weeks of February 1996 were concerned
with finishing this report, and preparing for the presentation.

 11

PART 1. DEVELOPMENT OF THE SIMULATION
ENVIRONMENT

1. Introduction
The development of the simulation environment was a significant task in this work,
involving a process of design, implementation and testing. Issues such as
extensibility, re-useability and presentability were purposely considered as core
requirements, as a specific goal was to have an environment that could be used in a
multitude of ways; not only for this work, but for other interested parties requiring
generic network components.

In carrying out the development of this environment, considerable attention was given
not just to what tasks were required, but how these tasks were to be carried out. For
this reason, discussion is carried out on methodologies, processes and considerations.
Given that we are deeply concerned about future use of this environment, it is further
clear that sufficient documentation and justification is essential in explaining not just
what the environment is, but also how it came into being.

This chapter is segmented into three main sections. The first covers the design of the
environment. This addresses the requirements as an overview (the first report
constituted the results of the requirements analysis process) and then details design
methodology and considerations before advancing onto a top-level architecture, and
thence design of modules within the architecture.

The second section presents the implementation of this design. This process was
relatively straightforward, however, there are a number of important issues that are
discussed. These include certain ways that specific aspects of the design were mapped
into the BONeS environment, along with other process considerations. All aspects of
the BONeS implementation are presented, including data structures, block diagrams
and custom 'C' code where appropriate. Some are relegated to appendices.

The third section addresses testing. Due to the object nature of the designed
environment, it is possible to verify modules as stand-alone entities, occasionally
supported by previously verified modules. The testing was informal, but never carried
out due to the problems that occurred with BONeS, so a brief discussion is given to
outline the testing concerns.

 12

2. Design
The design phase is concerned with first resolving an architecture and then the entities
within that architecture. The goal is to meet the requirements of being generic and
extensible, along with specifically addressing the needs for the simulations that are to
be carried out in this work. Significant focus is given to the former, whereas the latter
is largely a result of the former.

2.1. Strategies
The design phase was carried out with specific considerations identified before design
commenced. Considerations were mostly concerned with a process to be used in the
design, and issues of attention during the execution of that process. The first design
issue is a high level architecture, requiring the identification of high level components,
and an assignment of functionality.

Having resolved a high level architecture--which must address the requirement for re-
useability and extensibility--the individual modules within that architecture are
considered. Each requires a detailed design, which is carried out by way of the
following steps:

1. It is known what functionality must be provided by the module. This functionality
is generally related directly to the inputs and outputs of the systems in a well-
defined manner.

2. An examination is made with respect to the real world (if the module is not
generative) entity that the module provides a model of. This serves as a starting
point for understanding the behaviour of the model.

3. An external interface is developed. The architecture already resolved what modules
communicate with other modules, and a abstract notion of the messages to be used
in such communication, so this process continues the refinement. These issues
intend to give a complete coverage of the boundary conditions for the module:
which serves as a starting point for the internal design, involving:

�� Establishing the position of the module in relation to other components.

�� Determining exactly what messages and the content of these messages are
to be communicated to support the functionality.

�� Determining externally visible parameters that are affected by the
associated entities, or are otherwise available to be utilised.

�� Sketching the behaviour and nature of the inputs and outputs to the module,
due to the inputs that result in outputs as a function of the parameters and
internal state.

�� Determining what ancillary functions must be provided to external entities
to aid them in the processing of inputs and outputs.

�� Determining what ancillary functions must be provided by external entities
to aid this module in the processing of inputs and outputs.

�� Indicating what state the module will be in when it first starts.

 13

4. The internal design is developed. This consists of an initial partition of the internal
module from which the entire internal functionality is resolved.

In constructing the internal design, the chosen methodology to use is that of data
driven functional partitioning. This is due to the nature of the environment that is
characterised by the stimulus of an input message whose action can be traced through
to cause specific functional responses. The use of structured design methods and
notations, such as data flow diagrams and process specifications, is appropriate here
for this reason. Also, with data flow diagrams, the mapping into BONeS is extremely
straight forward, as BONeS is inherently a data flow processor and processing bubbles
transform directly to BONeS Modules. The data flow diagrams can, and do, use
control flows as BONeS has the concept of a "trigger" to implement a control flow,
further assisting the transition.

Contrast this data based processing system to a state based processing system where
inputs are first classified according to state, then processed according to their
characteristics. Such a system is not easily amendable to BONeS, because it would
involve significant data switching and duplication of modules for actions that are
present in multiple states.

In adherence to the concept of information hiding, and in some respects the Object
Oriented paradigm, all data used in communication is not directly accessed. Modules
that "own" the data provide accessors that allow for creation, manipulation, and
destruction of data elements. This encapsulation lends itself to several considerable
benefits, not the least of which is the ability to hide processing (e.g. insertion of
hidden fields and probes) within accessors. This activity causes the creation of a lot of
small modules in a bottom up manner, but this is a trivial exercise that provides many
benefits.

In general though, the concept of information hiding is a prime concern. But other
engineering principles such as coupling, cohesion, consistency, extensibility and
understand ability are also required. These are all observed.

The following points summarise various other strategies taken.

�� Placing “stubs” for processing is used in situations where processing does
not occur, but there is a chance that either it may be added at a later date, or
more importantly, a probe may be placed at such point to capture the data
that would be processed. Simulations need to use probes at strategic places
to collect data.

�� Processing is divided in such a manner that coping with new types of
processing, or new elements to be processed requires a trivial, or at least
mild, modification or addition. This provides a greater allowance for
extensibility, re-use and testing -- the latter a prime concern.

�� Functionality is abstracted up towards the top of a sub-module for clearer
understanding. A user may need to place a probe at some point, so therefore
should be able to navigate an internal construction with ease. If the user
cannot easily understand the construction, then incorrect probe placement
and results may occur.

�� Re-useable elements are located and exploited where possible, this is
further aided by BONeS ability to defer typing for a module until it is

 14

connected to neighbouring modules. This allows for generic processing
blocks to be constructed; similar to parameterised templates in C++, as an
analogy. Work is saved, and testing time is reduced.

�� The names of processing blocks are intended to be easily understood and
correctly representative of the internal behaviour. Again, a user is expected
to be able to navigate for the purposes of placing probes.

�� Performance concerns are addressed, this may take the form of
implementation in the more primitive ‘C’ language so as to provide an
execution speed-up. Simulations are notorious for consuming considerable
time and resources, attempts must be made to minimise this.

�� Specific capabilities of BONeS are worked towards, but not made as
dependencies in the design. This includes deferred typing, data inheritance,
type resolution and module re-use. If the capabilities are present in the
implementation environment, then maximising the use of them is
beneficial.

An alternate design approach may have been to use an Object Oriented methodology.
This could have allowed further re-use (e.g. the processing of primitive messages
could be abstracted into a class which is inherited and overloaded by each layer) and a
smaller design. However, as BONeS itself does not support several fundamental
aspects of the OO concept, a mapping would have been required. It is much easier to
use an alternative design strategy; one that best supports the problem at hand.

The documentation of the design is further considered to be important due to
envisaged re-use. The data flow diagrams, process specifications, abstract data types
and the suchlike are all presented with annotations.

2.2. Architecture
The high level design results in an architecture. This architecture identifies significant
components and the interfaces between them; and hence the way in which the
components interact. The architecture is of critical importance due to the explicit
concerns about extensibility.

The requirements for the design are for network components that can be used to carry
out various simulation scenarios. These network components must also satisfy several
other criteria. They must be extensible and generic, and not unduly complex in the
way they communicate with each other and --importantly--, they need to be easily
understood if others are to use this environment and they should try to adhere to good
engineering concepts, such as modularity. In summary, it should be possible to use
(and re-use) them in a wide variety of situations with an ability to extend and augment
them in various ways.

When examining communications networks, it becomes apparent that, fundamentally,
there are three distinct components, illustrated in Figure 1-2.1.

�� End Systems -- These originate and generate traffic; they are connected to
a Communications Link via one access point only (in general). They exist
as stand-alone systems; an example is a UNIX Workstation, or a desktop
PC.

 15

�� Intermediate Systems -- These are connected to multiple Communications
Links via multiple access points. They do not generate (significant) traffic,
but serve to switch traffic between the Links that they are connected to.
These exist as stand-alone systems; an example is a Router, or sometimes a
Workstation configured to operate as a Router of sorts.

�� Communications Links -- These transport bits of information across a
geographical distance. They manifest themselves in the real world as Public
Network connections (e.g. DDN, ISDN, Frame Relay, ATM) or other
connections (e.g. Ethernet, Fiber Optics, Radio).

End System
(Workstation)

Intermediate System
(Router)

End System
(PC Server)

Communications Link
(Ethernet)

Communications
Link

(FDDI Ring)

Figure 1-2.1. Fundamental Network Components

This delineation serves as a good starting point since virtually all networks can be
described in terms of such components. In addition, the OSI reference model
(ISO7498, 1984) uses this terminology as well. The simulation environment is
concerned with all three components, plus additional sub-categorisations: e.g. the split
of End Systems into "Hosts" and "Traffic Generators"; where the former has a
connection oriented capability, and the latter exists to excite the network with traffic
on a connectionless basis.

The OSI reference model, in fact, provides an extremely useful framework to use in
further partitioning of the architecture. The reference model is concerned with the
external view of operation of entities, not so much the internal. The concept used is
that of layering, where each layer in the model provides a specified service, and this
service is provided though a rigidly defined set of operations. The layers provide
specified services at the upper boundaries, but use specified services at their lower
boundaries. The importance of this distinction is that it should be, if done correctly,
possible to provide a service in an entirely different way by altering or replacing a
layer and not have any consequent effect on other dependant layers. In effect, the OSI
reference model describes "what" a layer will do, without "how" it will do it.

 16

The seven OSI Layers, shaped though a set of specified principles (International
Organisation for Standardisation, 1984), are defined as follows.

1. Physical -- Concerned with the transmission of an unstructured bit stream over a
physical link; e.g. mechanical, electrical and procedural characteristics. Examples:
V.24, X.21bis, I.430.

2. Datalink -- Provides for the transfer of data across the physical link; it may use
synchronisation, error control and flow control. This is sometimes reliable.
Examples: High-level Data-Link Control (HDLC) and Ethernet/IEEE802.3.

3. Network -- Provides upper layers with independence from the data-transmission
and switching technologies used to connect systems; and is responsible for
connections across networks. Examples: Internet Protocol (IP), Connectionless
Network Protocol (CLNP), X.25.

4. Transport -- Provides reliable, transparent transfer of information between end
points; with end-to-end error recovery and flow control. Examples: Transmission
Control Protocol (TCP), Transport Protocol 4 (TP4).

5. Session -- Provides control structure for communication between applications, e.g.
tokens, checkpoints, synchronisation. Examples: File Transfer Protocol (FTP).

6. Presentation -- Performs data translation for the purposes of providing a
standardised representation across diverse platforms. Examples: Abstract Syntax
Notation 1 (ASN.1), External Data Representation (XDR).

7. Application -- Provides specific services to the users of the OSI environment.
Examples: Remote Procedure Calls (RPC), Electronic Mail (X.400).

Justification for this partitioning can be found in ISO 7498, and for a more complete
coverage a detailed reference should be consulted, such as (Stallings, 1993A). A
diagrammatic representation of these Layers as they map into the previously identified
network components is shown in Figure 1-2.2. The Management entity will be
explained subsequently.

 17

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Datalink

1. Physical

3. Network

2. Datalink

1. Physical

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Datalink

1. Physical

3. Network

2. Datalink

1. Physical

Physical Media Physical Media

End
System

Intermediate
System

End
System

Communications
Link

Communications
Link

Management

Figure 1-2.2. OSI Model: Layering Concept

In this work, concern is primarily with the bottom 4 layers, as the upper 3 layers exist
generally as a specific user service, and are not particularly important from the view of
examining the functionality of protocols. Consider the upper 3 layers to merely "add
value" to the lower 4 layers, whereas the lower 4 layers implement the critical core
functionality.

For communication between layers, a set of conceptual primitives and parameters has
been defined. The primitives specify the functions to be performed and the parameters
qualify those functions with data and control information. The following primitives
are defined, as illustrated in Figure 1-2.3.

1. Request -- Issued by a Service User to invoke a Service, and pass parameters to, a
Service Provider.

2. Indication -- Issued by a Service Provider to indicate that a procedure has been
invoked by the peer Service User on an association; or to notify the Service User of
an action initiated by the Service Provider.

3. Response -- Issued by a Service User to acknowledge or complete a procedure
previously invoked by an indication to that Service User (by the Service Provider).

4. Confirm -- Issued by a Service Provider to acknowledge or complete a procedure
previously invoked by a request to that Service Provider (by the Service User).

Note that a Service Provider consists of a Layer (N) instance, and a Service User
consists of a Layer (N + 1) instance. The inter-layer communication (between a peer
Layer (N) and Layer (N)) is layer specific.

 18

Request

Indication

Response

Confirm

t1

t2

t3

t4

Service User
Layer N

(A)

Service Provider
Layer N-1

(A-B)

Service User
Layer N

(B)

Figure 1-2.3. OSI Model: Message Primitives

In this work, concern is largely with Requests and Indications, simply by virtue of the
current functionality--much of it is unconfirmed; the only confirmed behaviour is with
the transport protocol which coming from a pre-OSI era does not strictly map into this
environment.

By using the OSI Reference Model, by way of the Layering Concept, the following
can be satisfied:

�� Genericity -- The layers can be used in a variety of situations. They are not
tied to a specific type of communications architecture. The same layer can
be used in different systems, and the Service functions are not oriented
towards particular ways that the layer’s functionality is provided internally.

�� Extensibility -- The layers can be internally modified to provide more
functionality or different types of functionality. New layers can be
developed and can slot into the place of existing layers with no, or at least
trivial, modification. The rigidly defined interfaces ensure this.

�� Coupling and Cohesion -- The inter-layer communication is strictly
defined and minimal. It is abstracted to be sufficient for most scenarios. The
defined primitives for communications are clear and clean abstractions.

�� Consistency -- The inter-layer communication has abstract elements that
have similar semantic and syntactic content, regardless of layer being
communicated with.

What this means is that new layers can be easily developed and inserted, and in
general the constructed environment can be expanded and (re-)used. The construction
of complex networks is trivial, because the interfaces between components are simple,
yet extensible. The direct correspondence between elements in the real world, and
elements in this environment, by way of the OSI paradigm, allows for the direct
translation of problem domain aspects into this space for solution--extremely critical
in a modelling process.

Having decided to base our architecture upon this model, the next issue concerns the
way in which it is used in this work. Doing so means considering each of the required
components--the Communications Link, Host, Traffic Generator and Intermediate
System--and how they could be constructed using the OSI model. The method taken

 19

was to build these components out of entities that mapped directly to OSI layers where
at all possible.

The first component to consider is the Communications Link; this link connects End
Systems and Intermediate Systems and generally encompasses the Physical Layer and
the Datalink Layer.

There is no need to model a Physical Layer here, so the Communications Link is
constructed of a Datalink Layer that internally models a Physical Layer (i.e.
transmission delay via. bandwidth and propagation characteristics). Thus, the
Communications Link is illustrated in Figure 1-2.4.

Datalink
Layer

Communications Link

Figure 1-2.4. Communications Link

Secondly, the Host component requires a transport service, as this is the prime
element in the environment (the work is concerned with transport level congestion
control!). The transport service occupies the Transport Layer, but also requires a
traffic stimulus. The stimulus is generated by an Upper Layer entity referred to as a
Generator.

In order to abstract the functionality of this Generator away from being a "specific"
Transport Layer Generator, and to avoid unnecessarily coupling the Generator with
the Transport Layer, some adaptor is needed. This adaptor is a Transport-Adaption
Layer. At the lower edge of the Transport Layer a Network Layer is used to provide
access to the network. This Network Layer connects to the Communications Link,
which has been defined to be a Datalink Layer. The Host is shown in Figure 1-2.5.

 20

Transport
Layer

Network
Layer

Transport Adaption
Layer

Generator

Host

Figure 1-2.5. End System: Host

Thirdly, the Traffic Generator is an End System just like the Host. Its construction is
much the same, in that it requires the Network Layer to communicate with the
Communications Link as the Datalink Layer. However, the Traffic Generator does not
require a reliable transmission service, as that is not defined as its role, but it does
need to provide traffic stimulus. Hence, it re-uses the Generator -- with the
construction of a Network-Adaption Layer in the same manner as the Transport-
Adaption Layer. The Traffic Generator is shown in Figure 1-2.6.

Network Adaption
Layer

Network
Layer

Generator

Traffic Generator

Figure 1-2.6. End System: Traffic Generator

Next, the Intermediate System must connect a number of Communications Links by
way of the Datalink Layer. Therefore, it consists of a number of Network Layers (as
per the OSI Reference Model), which use a Routing Module to perform the switching
between Network Layers. It does not require any other layers. The Intermediate
System is shown in Figure 1-2.7.

 21

Network
Layer

Routing Module

Intermediate System

Network
Layer

Figure 1-2.7. Intermediate System: Router

Finally, a central control component is required. The OSI architecture does account
for this in defining a Management Information Base (MIB) that communicates with all
layers -- via the Common Management Information Service (CMIS) (Stallings, 1993).
This is a single stand-alone entity that has pervasive access to all other entities,
defined to be Management.

Consider that the Management functionality could be distributed, as an inherent aspect
of all other modules, but the decision was made to provide one centralised point at
which management occurs, and an "interface" on all entities through which elements
are accepted from that central point. Management is shown in Figure 1-2.8.

Management

Management

Figure 1-2.8. Management

The extent to which re-useability has been employed was a definite consideration
here. The re-useability of the Generator and the Network Layer being prime examples.
The use of the adaption layers promotes re-useability (including the case of concept
re-usability) and preserves the architectural concepts. Hence, much is gained in this
design, with the expense being the construction of two adaption layers -- which are
trivial in operation -- and the other cost of genericity in having to maintain consistency
and so forth. The gains far outweigh these costs however.

Having established these modules, a communications interface must be examined. In
keeping with the OSI Reference Model and the primitives indicated above, all
communications between entities will be based upon these primitives--except for the
case of the Generator that uses an abstract data type thence mapped by the Adaption
Layers. Further, the OSI Reference Model does have, with regard to many layers, a
common set of messages used for communication -- Note that message is used in an
abstract concept, it may be a remote procedure call, or a data structure, etc. These
common messages include:

 22

�� Connect -- Either a request for a Service User to have the Service Provider
establish an operating association, or an indication from the Service
Provider to the Service User to notify of an establishment of the operating
association (where it was not requested by the Service User). This is local
communication.

�� Disconnect -- Either a request for a Service User to have the Service
Provider terminate an operating association, or an indication from the
Service Provider to the Service User to notify termination of the operating
association (where it was not requested by the Service User). This is local
communication.

�� Status -- An indication of local status information from the Service
Provider to the Service User. This is local communication.

�� Data -- Either a request for a Service User to have the Service Provider
transfer an element of data through to the peer Service User, or an
indication from the Service Provider to the Service User to notify of
received data from the peer Service User. This is peer-to-peer
communication in our case, but not always so in the real world.

A simple state diagram, given in Figure 1-2.9, illustrates the basic relationship
between these messages.

Inactive

ActiveCONNECT

DISCONNECT

DATA /
STATUS

Figure 1-2.9. Message Primitive State Diagram

And, for the purposes of management:

�� Set -- An indication from Management to have an element of information
Set to a specific value in the receiving Layer.

With a message, there are two classes of parameters. The first class is specific to the
message at hand, such as length fields, content types, addresses for peer end-points
and so on. The second class is an abstract content itself, which is usually of some
opaque type--it is merely an encapsulation. To encapsulate information, OSI systems
have the concept of an Information Element to represent some unit of information.
Therefore, there are two allowed types of encapsulations here: other messages and
Information Elements. This relationship is illustrated in Figure 1-2.10.

 23

Message

Message
Specific

Parameters

Message
Content

Information
Element

Figure 1-2.10. Message Encapsulation Relationship

This is an ideal situation in the BONeS model. BONeS allows for inheritance in its
data hierarchy, and hence the ability to have polymorphic behaviour. In a restriction to
two types of encapsulation, the "typing" can be considered to be "strong", and hence
subject to better run-time verification measures. Rather than have many lines of
communication between the entities, they are aggregated into one single line (in each
direction) that can accept a type at the base of the hierarchy for the particular
entity/layer. When parsed inside the module, these "base" messages can be promoted
back to their original type -- hence, the ability is there to provide more types in
communication, yet not affect the external interface and to save unwanted cluttering
and potential errors. Figure 1-2.11 illustrates the hierarchy in this model.

Layer<N>
Primitive

Layer<N>
Connect

Layer<N>
Disconnect

Layer<N>
Status

Layer<N>
Data

Message
Primitive

Layer<N+1>
Primitive

Figure 1-2.11. Message Hierarchy

The architecture must also have the concept of addresses; there are two primary
reasons for such. Firstly there is the need for communication between peer
components, whether it be connection or connectionless. Thus, all higher-level
components (End Systems, Intermediate Systems) have distinct addresses. The next

 24

concern is with Management that needs to direct information to a specific component,
and - more specifically - an entity within the component. For this case, it is decided
that all entities have addresses.

The original high-level design carried out in Thesis 1 constructed an architecture that
was not based upon the OSI model. In the intervening time, the realisation was that
significant benefit could be derived from an OSI based architecture; so the new
architecture was designed. This benefit was seen to require slightly more time in
design, but provide benefits in implementation and testing.

2.3. Primary Modules
The significant modules play a major role in the architecture. Detailed design aspects
are provided corresponding sections of Appendix 1.

2.3.1. Datalink Layer

2.3.1.1. Overview

The Datalink Layer models a real world communications link. The real world entity
manifests itself as a physical transmission line, upon which bits (in some
representation) are transported. In transporting these bits, framing may also be used.
The link is generally peer-to-peer (either point-to-point, or a multi-drop), but this is
not always the case--however, it certainly is for most cases we are concerned with.

The physical nature of transmission lines and their geographical length gives rise to
two defining attributes. The first is a Bandwidth: defined to be the number of bits that
can be placed onto the link at any given dimension of time (e.g. bits per second). This
limits the rate at which the transmission line can pass bits; and hence, information.
The second attribute is a Propagation Delay: the result of the bits having to move from
one end of the transmission line to the other (fundamentally a result of electron
movement).

Both of these attributes result in a delay that is incurred by information traversing the
transmission line. The delay due to the Bandwidth is a function of the number of bits
passed, whereas the delay due to the Propagation is constant. The total delay incurred
can be represented in the following relation:

 Delay := Bandwidth (Bits/Sec) / Length (Bits) + Propagation Delay (Sec)

In addition, a third attribute (of sorts) is present: this is more of a derived attribute, as
opposed to an inherent one. It is the state of the transmission line: the line can be
active or inactive. In the latter state, the line cannot pass information from one end to
the other.

An entity using the transmission line places bits, or a collection of bits, onto the line
and expects these bits to appear at the peer end. In the real world, examples of a
transmission line include coaxial cable, fiber optics and space (for radio spectrum
signals).

Note that the physical transmission line described here is represented by Layer 1 and
below in the OSI model, however we model at Layer 2. This is because we don't need
to model the bit-by-bit transfer, as it is not relevant in a simulation. What we care
about is the transmission of a length of structured bits, which are contained in

 25

representations of packets, so Layer 2 is sufficient. However, Layer 2 does often
provides a reliable Datalink protocol, but we don't consider that case--nevertheless, it
is entirely possible to construct such a thing internally without affecting the external
interface, a beauty of the OSI model.

The modelling of Layer 2 activity occurs by accepting Datalink Layer messages and
acting upon them. Data messages are delayed and thence released to the opposing
side's Upper Layer, while Status and Connection messages are generated locally and
propagated to the local side's Upper Layer. In delaying Data messages, the Datalink
Layer only uses the Length of the message, and no other fields, as per the relation
given above.

To model the availability aspect of the line, the Datalink Layer retains state indicating
whether or not the line is active or inactive. Data messages that are passed to the layer
when the state indicates that it is inactive will be discarded. The Upper Layer is
informed of these state changes.

As with other modules, some operations can be carried out via messages from the
Management entity. This allows for dynamic behaviour during the execution of a
simulation. For the Datalink Layer, the state of the layer can be altered to be either
active or inactive. This ability to activate and deactivate a link during the execution of
a simulation was considered important.

Internally, the operation of the Datalink Layer is simple. The core operation is the
delay of input as per the relation above, but ancillary functionality is required to
control the flow of input messages, and perform other control activity.

2.3.1.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The
treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.1.2.1. Relationships

The Datalink Layer concerns itself with only three external entities. The first two of
which are the Upper Layers that represent each end of the modelled data link
communications pipe--these directly represent entities in the real world. The third is a
Management entity that has been introduced as a means to provoke actions and
modify aspects of the Datalink Layer.

The context diagram, in Figure 1-2.12, illustrates the entities and their data
relationships.

 26

0.
Datalink Layer

Management

Upper Layer A

Upper Layer B

Management
Message

Datalink
Message

Datalink
Message

Figure 1-2.12. Datalink Layer: Context Diagram

Table 1-2.1 details the role and types of data communicated.

Name Role Communicated Information
Layer A One end point for

communications pipe
Datalink Messages, for Data and
Status transfer

Layer B The other end point for the
communications pipe

Datalink Messages, for Data and
Status transfer

Management Modify behaviour Management Messages, with
Datalink Information Elements

Table 1-2.1. Datalink Layer: Entity Relationships

Table 1-2.2 outlines the content, purpose and description of data communicated.

 27

Name Content Purpose
Datalink Connect Indication Message Null Indicate that Datalink is Active
Datalink Disconnect Indication
Message

Null Indicate that Datalink is Inactive

Datalink Data Request Message Length,
Content

Request transfer to alternate end
point

Datalink Data Indication Message Length,
Content

Indicate arrival from alternate
end point

Datalink Status Indication Message IE Indicate Flow Control state
Management Set Indication Message IE Modify state
Datalink State IE Boolean Change current state
Datalink Flow Control IE Boolean Indicate whether flow control

released

Table 1-2.2. Datalink Layer: Data Relationships

Any other data that arrives from the external entities to the Datalink Layer is ignored.

2.3.1.2.2. Parameters

Additionally, there are parameters, which define the behaviour of the Datalink Layer.
These parameters are represented as data stores internally, but are externally visible
and configurable by users of the module. Table 1-2.3 describes these parameters. They
must be set to legitimate values for the correct modelling of the Datalink Layer. The
Address is mandatory for Management to correctly function.

Name Purpose Values Default Example
Address Allow messages to be directed to this

module
Integer 0 10

Bandwidth The bandwidth in bits per second Integer 64000 2000000
Propagatn
Delay

The propagation delay in seconds Real 0.007 0.700

State State of the datalink as being active or
inactive

Boolean True False

Table 1-2.3. Datalink Layer: Parameters

A design decision was made as to which of these parameters were to be modifiable
from the Management entity. A rationale was developed based on whether or not it
was realistic for the parameter to alter during the course of a simulation, and whether
or not such alteration may be required from simulation perspective.

For the Datalink Layer, the Bandwidth and Delay characteristics are largely a function
of the underlying communications media, which is a fixed and static manifestation
(There are cases where it may not be, i.e. a switched call through a
telecommunications network). The State of a Datalink Layer, however, is more
realistically subject to fluctuation, and there are good reasons for why simulations may
wish to contrive such fluctuations. Therefore, only State is modifiable during
simulation execution, whereas Bandwidth and Propagation Delay remain static.

 28

2.3.1.2.3. Behaviour

�� Datalink Data Request Message Input

The message will only be processed if the State of the Datalink Layer is active
(True), and if Flow Control has been Released, indicating that the Datalink
Layer is currently not processing an existing message. If either of these
conditions are not met, then the message is discarded.

Next, Flow Control is Asserted and the message is delayed for a time period
corresponding to its transmission at the specified Bandwidth: using the Length
of the message to determine this.

When that delay is complete, a Datalink Status Indication Message is sent
back to the originator. It has a Datalink Flow Control IE as its content,
indicating that the originator may now transmit another message (i.e. Flow
Control is now Released). The message is then delayed for a time period
corresponding to the specific Propagation Delay.

In between, and after, each of these delays, the State of the Datalink Layer is
examined, and the message is discarded if the state is inactive (False). Once
the final delay is complete, the message is converted into a Datalink Data
Indication Message and output to the alternate upper layer from which it
originated.

�� Datalink Data Indication Message Output

This output is generated as a result of the process of accepting a Datalink Data
Request Message at the other end of the Datalink Layer.

�� Datalink Connect Indication Message Output

This output is generated when the Datalink Layer becomes active. It is a
notification that the Datalink Layer is capable of accepting and transporting
messages.

�� Datalink Disconnect Indication Message Output

This output is generated when the Datalink Layer becomes inactive. It is an
notification that the Datalink Layer is not capable of accepting and
transporting messages.

�� Datalink Status Indication Message Output

This output is generated when Flow Control is released as an indication that
the next Datalink Data Request Message will be accepted by the Datalink
Layer.

�� Management Set Indication Message Input

The message is first verified to ensure that its Destination Address corresponds
to the Datalink Layer's Address. If it is not destined for this Address, then it is
discarded. If accepted, the Information Element in the message is extracted
and processed according to its type:

�� Datalink State IE -- The current state of the Datalink Layer is
altered to that as specified in the IE. If the state becomes active, then

 29

a Datalink Connect Indication Message is sent to both Upper
Layers, otherwise if the state becomes inactive, a Datalink
Disconnect Indication Message is sent.

2.3.1.2.4. Data Accessors

For constructing and deconstructing data that flows into and out of the Datalink Layer,
a number of accessors are designed to encapsulate the direct access to the data
structures. Some of these accessors are private, whilst others are public and available
to the external users of the Datalink Layer.

Name
Construct Message Datalink Data Request
Construct Message Datalink Connect Indication
Construct Message Datalink Disconnect Indication
Construct Message Datalink Status Indication
Extract Message Datalink Data Indication
Extract Message Datalink Connect Indication
Extract Message Datalink Disconnect Indication
Extract Message Datalink Status Indication
Convert Message Datalink Data Request to Indication
Construct IE Datalink Flow Control
Extract IE Datalink Flow Control
Construct IE Datalink State
Extract IE Datalink State

2.3.1.2.5. Dependencies

The Datalink Layer requires the use of external modules.

Name
Extract Message Management Set Indication

2.3.1.2.6. Initialisation

When the Datalink Layer is first initialised, it will generate a Datalink Connect
Indication Message or a Datalink Disconnect Indication Message depending on the
initial value of the State parameter. This will ensure that Upper Layers are correctly
aware of the Datalink Layer's State.

2.3.1.3. Internal Design

2.3.1.3.1. Approach

The approach for the internal design was to partition the functionality two ways:

�� Transmission Channel as the means by which Datalink messages are
relayed between two upper layer peers. This models the acceptance,
verification, delay and emergence of the Datalink Data Request/Indication

 30

Message and the generation of a Datalink Status Indication Message for
Flow Control purposes. Parameters are used from data stores to control this
behaviour.

�� Management Processor as an entity that accepts and acts upon messages
from Management, and thence sets appropriate local parameters
accordingly.

Note that there are two instances of a Transmission Channel, and only one instance of
a Management Processor, with the former using the same parameters. An extension
could be to provide an asymmetric capability in terms of Bandwidth and Propagation
Delay characteristics. This architecture is shown in Figure 1-2.13.

Forward
Transmission Line

Management

Database

Data Data

Status +
Config

Config

Backward
Transmission LineData Data

Figure 1-2.13. Datalink Layer: Architecture

2.3.1.3.2. Data Flow Diagrams and Process Specifications

Detailed design information is provided in Appendix 1.

2.3.1.4. Additional notes

The following issues were addressed in the design.

�� Possible additional control via Management -- The construction of
management processing allows for new functionality to be added with
minimal disruption to the existing design.

�� Possible asymmetric transmission channels -- The partitioning of the
transmission channels and the way in which they use their behavioural
information (Bandwidth and Propagation Delay) means that changes to
support asymmetric channels are trivial.

�� Possible internal buffering of messages -- The flow control mechanism, as
externally visible, does not preclude an internal ability to buffer messages
for transmission. This, such a change could be carried out and implemented
without needing to alter external modules.

 31

�� Use of primitive accessors -- At all times, accessors are used to manipulate
data structures.

�� Performance considerations -- For performance, the flow of data within the
transmission channels was designed to be void of any significant processing
operations.

 32

2.3.2. Network Layer

2.3.2.1. Overview

A Network Layer is not just a concept, but an actual operating entity in real world
communication systems. This layer provides an unreliable datagram oriented service
between distant peers. A key feature of the Network Layer, represented as Layer 3 in
the OSI Reference Model (International Organisation for Standardisation, 1984), is the
ability to address messages to other Network Layers and have them routed within the
network, traversing differing underlying transmission media.

The single most important property of the Network Layer is its independence from the
underlying transmission media; this is in contrast to the Datalink Layer which is
generally more closely tied to the nature of the transmission media. In our
architecture, the split between the Datalink Layer and the Network Layer (rather than
combining the two into a single entity) allows for the seamless use of differing
Datalink Layers.

The Network Layer (Layer 3) protocols (for example, the Internet Protocol (IP) and
the Connectionless Network Protocol (CLNP)) also provide specific measures related
to the fact they are routed across multiple links. This includes mechanisms to detect
infinite looping (Hop Count and Time to Live fields), addresses and congestion
related information. The Network Layer is also generally the place that queuing occurs
in communications systems, it generally does not occur above the Network Layer, is
always provided at the Network Layer, and sometimes is provided at the Datalink
Layer. It is within this queuing that messages are lost due to the limited link to which
it is connected, because the queue has a finite size and can only transmit items at a
finite rate.

Internally, the Network Layer is reasonably trivial. It consists of the core queuing
activity, surrounded by ancillary matters to deal with state and layer connection. The
queuing activity can be simple, as in a FIFO with overflow, or it can consist of
complex policies to dictate how messages are inserted and extracted (in the real world,
there may even be a number of queues). Queue length and policies' are specified.

When the Network Layer receives messages from the Upper Layer, it can either
transmit them immediately onto the Datalink Layer, or queue them if it is currently in
the process of transmitting other messages. Messages received from the Datalink
Layer are passed to the Upper Layer immediately if they contain data, or are used for
control purposes if they indicate the status of the Datalink Layer.

2.3.2.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The
treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.2.2.1. Relationships

 33

The Network Layer communicates with two other entities. Unlike other modules,
there is no communication with Management. The reason for this is that there were
deemed to be no requirements for Management control, however additional in a
modified design would be trivial.

The first entity that the Network Layer communicates with is an Upper Layer using
Network Messages. The third entity is a Datalink Layer that is used for the eventual
transmission of Network Messages. Status information is propagated up from the
Datalink Layer, and at the same time, the Network Layer also propagates status
information (not necessarily because of what has occurred at the Datalink Layer) up to
the Upper Layer.

Figure 1-2.14 illustrates the entities and their data relationships.

0.
Network

Layer

Datalink
Layer

Datalink
Message

Upper
Layer

Network
Message

Figure 1-2.14. Network Layer: Context Diagram

Table 1-2.4 details the roles and information communicated between entities.

Name Role Communicated Information
Upper Layer Uses Network Layer as a

delivery agent for Data
Network Messages, for Status
and Data transfer

Datalink Layer Acts as the delivery service for
the Network Layer

Datalink Messages, Status
indications and Data transfer

Table 1-2.4. Network Layer: Data Relationships

Table 1-2.5 outlines the data.

 34

Name Content Purpose
Network Connect Indication Message Null Indicate that Network Layer is

active and can deliver messages
Network Disconnect Indication
Message

Null Indicate that Network Layer is
inactive and can’t deliver

Network Status Indication Message IE Indicate Load of Network Layer
Network Data Request Message Length,

Content
Request for Network Layer to
deliver messages

Network Data Indication Message Length,
Content

Indicate that message has
arrived from peer Network
Layer

Datalink Connect Indication Message Null Indicates that Datalink Layer is
active and can deliver

Datalink Disconnect Indication
Message

Null Indicates that Datalink Layer is
inactive and can’t deliver

Datalink Status Indication Message IE Contains flow control or other
IE

Datalink Data Request Message Length,
Content

Encapsulates Network message
for delivery via Datalink Layer

Datalink Data Indication Message Length,
Content

Indicates reception of
encapsulated Network Message

Datalink Flow Control IE Boolean Indicates that flow control is
released, so new message can be
sent

Network Load IE Real Indicates the load on the current
Network Layer

Table 1-2.5. Network Layer: Data Relationships

Any other data that arrives from external entities to the Network Layer is ignored.

2.3.2.2.2. Parameters

There are several external parameters that are important for the operation of the
Network Layer. Note that in this case, the Address is not entirely important for
Management operation, but for the purpose of addressing of Network messages. The
parameters are outlined in Table 1-2.6.

Name Purpose Values Default Example
Address Allow messages to be directed to this

module
Integer 0 10

End
System

Indicate whether this module is part of
an end system

Boolean True False

Queue
Discipline

Specify the input and output policies
for the queuing mechanisms

String “DropTail” “RED”

Queue
Length

Number of messages that the queue can
hold.

Integer 20 3

Table 1-2.6. Network Layer: Parameters

 35

2.3.2.2.3. Behaviour

�� Network Data Indication Message Output

This message is output as the result of two cases. 1) It arrived from the
Datalink Layer encapsulated in a Datalink Data message, and either this isn't
an End System, or this is an End System and it has our Address in it. 2) This is
not an End System and the Network Layer because inactive due to the Datalink
Layer indicating it was not active any more. These messages are the result of
the queue in the Network Layer being emptied back upwards.

�� Network Connect Indication Message Output

This message is generated for, and sent to, the Upper Layer to indicate that the
Network Layer is active and able to receive messages from the Upper Layer. It
occurs in response to a Datalink Connect Indication Message from the
Datalink Layer.

�� Network Disconnect Indication Message Output

This message is generated for, and sent to, the Upper Layer to indicate that the
Network Layer is inactive and unable to receive messages from the Upper
Layer. It occurs in response to a Datalink Disconnect Indication Message from
the Datalink Layer.

�� Network Status Indication Message Output

This message is generated for, and sent to, the Upper Layer to provide status
information about the Network Layer. There is currently only one item that can
be provided, and that is the load factor on the Network Layer's queue. This is
given in a Network Load IE and contains a number normalised to be between 0
and 1.

�� Network Data Request Message Input

When the Upper Layer sends this message, it is a request for the Network
Layer to transport it to Datalink Layer and thence onto another Network Layer.
The Network Layer processes this message by either sending it directly to the
Datalink Layer after encapsulating it in a Datalink Data Request Message or
temporarily queuing it before it is sent to the Datalink Layer.

The queuing may involve specific queuing disciplines with regard to how the
message is inserted into the queue, and how the message is removed from the
queue. When it is removed, it is sent to the Datalink Layer as a Datalink Data
Request Message.

�� Datalink Data Indication Message Input

This message arrives from the Datalink Layer. Its content is extracted, and if it
is a Network Data Request Message then it is first checked to see whether or
not it is destined for this Address if this is an End System. The Network Data
Request Message is then converted into a Network Data Indication Message
and sent up to the Upper Layer.

�� Datalink Connect Indication Message Input

 36

When this message is received, it is a notification that the Datalink Layer is
active. From this point onwards, until the reception of a Datalink Disconnect
Indication Message, the Network Layer can transmit messages to the Datalink
Layer. The reception of this message also causes the Outbound Queue to be
initialised, and a Network Connect Indication Message to be sent to the Upper
Layer to inform it of our state.

�� Datalink Disconnect Indication Message Input

When this message is received, it is a notification that the Datalink Layer is
inactive. From this point onwards, until the reception of a Datalink Connect
Indication Message, the Network Layer cannot transmit messages to the
Datalink Layer. The reception of this message also causes the Outbound
Queue to be cleared (resulting in the currently queued messages to be flushed
to the Upper Layer if this is not an End System), and a Network Disconnect
Indication Message to be sent to the Upper Layer to inform it of current state.

�� Datalink Status Indication Message Input

This message arrives from the Datalink Layer. If it contains a Datalink Flow
Control IE indicating Release then the Outbound Processing is requested to
release the next queued message.

�� Datalink Data Request Message Output

This output occurs as a result of processing a Network Data Request Message
from the Upper Layer (either directly, or after being queued). The request is
encapsulated within this Datalink Data Request Message and sent to the
Datalink Layer.

2.3.2.2.4. Data Accessors

There are several items of data that are specific to the Network Layer and hence have
data accessors constructed for them.

Name
Construct Message Network Data Request
Construct Message Network Connect Indication
Construct Message Network Disconnect Indication
Construct Message Network Status Indication
Extract Message Network Data Indication
Extract Message Network Connect Indication
Extract Message Network Disconnect Indication
Extract Message Network Status Indication
Convert Message Network Data Request to Indication
Convert Message Network Data Indication to Request
Construct IE Network Load
Extract IE Network Load

2.3.2.2.5. Dependencies

 37

Due to the use of the Datalink Layer entity, modules are required by the Network
Layer.

Name
Extract Message Datalink Connect Indication
Extract Message Datalink Disconnect Indication
Extract Message Datalink Status Indication
Extract Message Datalink Data Indication
Construct Message Datalink Data Request
Extract IE Datalink Flow Control

2.3.2.2.6. Initialisation

The initial state of the Network Layer is that it is presumed that the Datalink Layer is
not active.

2.3.2.3. Internal Design

2.3.2.3.1. Approach

Internally, there are two main processing blocks in the architecture:

�� Inbound Processing to process messages that arrive from the Datalink
Layer. This involves determining the type of message, and thence acting
upon it and its content. So far, this involves propagating state information
and altering the outgoing queue's behaviour.

�� Outbound Processing to process Network Data Request Messages that
arrived from the Upper Layer and are destined to be delivered to the
Datalink Layer--noting that processing involves possibly queuing the
Request until the Datalink Layer is able to accept it.

There is no management block, as currently the Network Layer does not have any
functionality relating to Management. The functional groupings are shown in the
architectural diagram in Figure 1-2.15.

 38

Inbound
Processing

Outbound
Processing

data

data

Control

data +
status

data +
status

data +
status

Figure 1-2.15. Network Layer: Architecture

2.3.2.3.2. Data Flow Diagrams and Process Specifications

Detailed design information is provided in Appendix 1.

2.3.2.4. Additional notes

The following issues were addressed in the design.

�� Possible additional interpretation of Datalink Messages -- The partitioning
of processing for Datalink Messages is such that modification and/or
addition of new functionality is trivial.

�� Consistent architectural split -- The same architectural split has been
employed as with most other modules; in terms of input, output and
management delineation.

�� Use of type switching for Messages and IEs -- The switches that classify
Network Layer Messages and Information Elements are such that they can
be used on hierarchically typed data structures, an inherent ability for
BONeS.

�� Use of primitive accessors -- At all times, accessors are used to manipulate
data structures.

�� Placement of simulation Probes -- A number of stubs have been put into
place to facilitate points at which Probes can be added for the purposes of
collecting data during simulations.

�� Additional queue input and output disciplines -- The input and output
disciplines are designed in such a way that it is trivial to add further. In the
case of an input policy, this would be an alternate selection, whereas for
output, it can be either alternate or in tandem with other disciplines.

�� Replaced outgoing processing -- For even more radical modifications, the
outgoing processing functionality is segmented to the extent that it could be
replaced entirely without affecting surrounding processing significantly.

 39

�� End and Intermediate System classification -- To facilitate re-use of this
module, the End system parameter allows for the Network Layer to be used
in an End System which does have concern about Addresses, or otherwise
an Intermediate System which does not have concern about Addresses.

�� Performance of queue ADT -- The queue was designed as an ADT partially
due to anticipation of it being implemented in a primitive language ('C') for
reasons of performance.

 40

2.3.3. Transport Layer

2.3.3.1. Overview

Real world communications systems do often have Transport Layers. This layer
provides a reliable delivery service between two specified end points. They expect to
have an unreliable transport medium--i.e. a Network Layer--at their disposal. Upon
this, the Transport Layer builds a reliable service by being able to detect lost data and
then retransmit that data until reception occurs. At its upper boundary, the Layer is
often stream oriented, in that it does not honour data boundaries between end-points,
but views all data as contiguous--hence, a receiver can not expect to receive transport
data messages with the same boundaries that were sent. Transport connections are
also, apart from as a research experiments, point-to-point and addressed.

Two well-known Transport Protocols are the ISO Transport Protocol 4 (TP4). and the
DARPA Transmission Control Protocol (TCP) (RFC793, 1981). The latter is under
study in this work. TCP is a complex protocol specified as a set of states, the
conditions for transition between those states, and legitimate behaviour that can occur
within those states. Two significant divides in these states are those concerned with
the establishment and termination of connections, and that concerned with the transfer
of data on an active session.

To transport data, TCP implements a sliding window based protocol. For a
transmitter, this means that the successful transfer of data is indicated by the reception
of acknowledgments from the receiver, allowing for more data to be sent. The receiver
is able to adjust window sizes in order to ensure that the transmitter does not have too
much data in transit at any given point in time. There are additional mechanisms such
as those for congestion avoidance and control, (re)transmission timeouts, silly window
syndromes, round trip time estimation and so on.

Our model of the Transport Layer consists of providing the stream oriented transport
service to an Upper Layer, allowing it to indicate a number of octets that it requires to
be transported. The Upper Layer can also initiate and terminate connections. The core
Transport Layer functionality is carried out by the Transmission Control Protocol
(TCP), which is modelled upon the BSD4.4/Net3 TCP implementation. Key
modelling aspects are:

�� The removal of all but ESTABLISHED state processing, as the core data
transfer is the only functionality we are interested in.

�� The need for fragment queues and data processing, but the model is only
concerned with data lengths, so therefore does not hold or process data per
se.

�� Removal of urgent data processing, as it is not used here.

�� Removal of most options processing, as it is not used here.

For a detailed explanation of TCP, (Stevens, 1995) should be consulted. Such a
detailed explanation would consume considerable space here.

The model is also concerned with compartmentalising and abstracting the TCP
processing to be that of a generic Transport Layer. A significant advantage of this is

 41

that other transport protocols can be inserted without modification to the external
activity of the Transport Layer, but also, testing is assisted.

Because we only retain TCP's ESTABLISHED processing, there needs to be some
way for the two end points involved in a conversation to synchronise themselves. The
only aspect of synchronisation is the Initial Sequence Number, and it is this which can
be set via the Management entity. Obviously, the entity must set both this at both end
points. The peer Address along with connect and disconnect operations originate from
the Upper Layer via transport messages.

2.3.3.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The
treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.3.2.1. Relationships

The Transport Layer is in communication with three entities. The first one of which is
the Management entity, as is the case with many other modules. Management
messages originate from this entity and are used to modify the Transport Layer
internally. The second entity is an Upper Layer that communicates via. Transport
Layer specific messages. The Upper Layer expects specific functionality to occur from
using these messages. In addition, the reception of messages from the Transport Layer
is known to occur under specific circumstances. The third entity is a Network Layer,
with which Network Messages are communicated. The Transport Layer expects to
transmit and receive Data Messages via. the Network Layer and is capable of
processing data and status messages propagated up from the Network Layer.

Figure 1-2.16 illustrates the entities and their data relationships.

 42

0.
Transport

Layer

Network
Layer

Network
Message

Upper
Layer

Transport
Message

Management

Management
Message

Figure 1-2.16. Transport Layer: Context Diagram

Table 1-2.7 details the roles and information communicated between entities.

Name Role Communicated Information
Upper Layer Requests start, stop and transfer

of information on
Transport Layer Messages

Network
Layer

Acts as the delivery agent for
the Transport Layer

Network Layer Messages, Status
and Data information

Management Modify behaviour of Transport
Layer

Management Messages, with
IEs

Table 1-2.7. Transport Layer: Entity Relationships

Table 1-2.8 outlines the data.

 43

Name Content Purpose
Transport Connect Request Message Address Requests the connection of a

session to the given address
Transport Disconnect Request Message Null Requests the disconnect of a

currently connected session
Transport Data Request Message Length Requests transfer of Data on the

current session
Transport Data Indication Message Length Indicates transfer of data on the

current session
Network Connect Indication Message Null Indicates that Network Layer

can accept messages
Network Disconnect Indication
Message

Null Indicates that the Network Layer
cannot accept messages

Network Data Request Message Length,
Content

Requests transfer of information
(encapsulated Transport) via
Network Layer

Network Data Indication Message Length,
Content

Indicates the transfer of
information (encapsulated
Transport) via Network Layer

Network Status Indication Message IE Indicates status information
about the Network Layer

Management Set Indication Message IE Modifies behaviour of Transport
Layer

Transport Setup IE ISN Conveys Initial Sequence
Number for start of Transport
sessions

Table 1-2.8. Transport Layer: Data Relationships

Any other data that arrives from external entities to the Transport Layer is ignored.

2.3.3.2.2. Parameters

Apart from the mandatory Address, there are no externally visible parameters for the
Transport Layer. However, there are some internal parameters, which are directly
affected externally--through Management and other messages--that warrant mention.
The parameters are shown in Table 1-2.9.

Name Purpose Values Default Example
Address Allow messages to be directed to this

module
Integer 0 10

Initial
Sequence
Number

Allow for end point synchronisation Integer 0 13214

Dest
Address

Specify the end point for the
communication

Integer 0 10

Table 1-2.9. Transport Layer: Parameters

 44

Some discussion is required as to the reason for allowing the Initial Sequence Number
to be set via Management. In this model of TCP, we have only kept the TCP
Established processing, and not concerned ourselves with the opening and closing
synchronisation states. The reason for this was to first remove complexity, and also
(more importantly) that these states were not needed for the simulation scenarios that
we envisaged--and, such initial synchronisation would cloud the real issues that we
are concerned with. However, having made that decision, the case still arises as to
how two peers in a session do perform synchronisation (to establish an Initial
Sequence Number). This was solved by allowing Management to configure both
peers' Initial Sequence Number. The same number will be used for each new Session,
so it is possible to change it for every subsequent session, or leave it at a single value.

2.3.3.2.3. Behaviour

�� Network Data Indication Message Input

This message arrives from the Network Layer. When received, the content of
the message is extracted, but only if the current state indicates that the
Transport Session is active. This content consists of a TCP Packet which is
passed into TCP Processing to be dealt with by a TCP Input process.

TCP Input processing involves core TCP functionality; such as verifying that
the packet is valid by way of the current sequence number and known window
positions, thence extracting out the data in the packet and passing it to the
Upper Layer or internally storing it in the case of out of order arrivals.
Acknowledgments are also processed, and this may result in the generation of
TCP packets to be passed back down to the Network Layer for transmission to
the session's peer.

TCP processing is fairly detailed. An explanation of it will be given when the
core functionality is treated specifically.

�� Network Connect Indication Message Input

This message arrives from the Network Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

�� Network Disconnect Indication Message Input

This message arrives from the Network Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

�� Network Status Indication Message Input

This message arrives from the Network Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

�� Network Data Request Message Output

This output occurs as a result of a generated TCP Packet that is required to be
passed to the session's peer. The Transport Layer encapsulates the TCP Packet
into this message and adds the appropriate Destination Address before passing

 45

it to the Network Layer. It expects the Network Layer to, or at least attempt to,
deliver this message to the specified address.

�� Management Set Indication Message Input

The message is first verified to ensure that its Destination Address corresponds
to the Transport Layer's Address. If it is not destined for this Address, then it is
discarded. If accepted, the Information Element in the message is extracted
and processed according to its type:

�� Transport Setup IE -- The contents of this IE is an Initial Sequence
Number to be used for the start of the TCP Session's processing. The
content is extracted and stored for use on subsequent session starts.

�� Transport Data Request Message Input

This message arrives from the Upper Layer. When received, the content of the
message is extracted, but only if the current state indicates that the Transport
Session is active. This content consists of Data to TCP, which is passed into
TCP Processing to be dealt with by a TCP Output process.

TCP Output processing involves core TCP functionality; such as determining
whether a packet can be sent due to the current window constraints, thence
constructing and sending the data as a TCP Packet via. the Network Layer for
transmission to the session's peer.

TCP processing is fairly detailed. An explanation of it will be given when the
core functionality is treated specifically.

�� Transport Connect Request Message Input

This message arrives from the Upper Layer. It is an indication that the Upper
Layer desires the establishment of a Transport Session to a peer Destination
Address that is also supplied in the message. Upon receiving this message, the
Transport Layer will configure the TCP Processing and set its state
accordingly. From which point onwards, Data messages can be sent or
received by the Transport Layer, until a Disconnect occurs.

�� Transport Disconnect Request Message Input

This message arrives from the Upper Layer. It is an indication that the Upper
Layer desires the termination of a currently active Transport Session. As such,
the Transport Layer will update its state accordingly, and terminate all TCP
Processing.

�� Transport Data Indication Message Output

This output is delivered to the Upper Layer and occurs as a result of Data
becoming available from TCP Processing. The Data is represented by its
length, and is encapsulated within the message and passed to the Upper Layer.

2.3.3.2.4. Data Accessors

Data Accessors are required for access to both the Transport Layer Messages and
Information Elements.

 46

Name
Construct Message Transport Connect Request
Construct Message Transport Disconnect Request
Construct Message Transport Data Request
Construct Message Transport Data Indication
Extract Message Transport Connect Request
Extract Message Transport Disconnect Request
Extract Message Transport Data Request
Extract Message Transport Data Indication
Construct IE Datalink Flow Control
Extract IE Datalink Flow Control
Construct IE Transport Setup
Extract IE Transport Setup

2.3.3.2.5. Dependencies

Due to the use of the Management and Network Layer entities, other modules are
required by the Transport Layer.

Name
Extract Message Management Set Indication
Construct Message Network Data Request
Construct Message Application Data
Extract Message Application Data
Extract Message Network Connect Indication
Extract Message Network Disconnect Indication
Extract Message Network Status Indication
Extract Message Network Data Indication

2.3.3.2.6. Initialisation

The initial state of the Transport Layer is that it is presumed to not be active. In
addition, the Initial Sequence Number is set to zero. The Address of the Transport
Layer must be defined if any Management Messages are to be received.

2.3.3.3. Internal Design

2.3.3.3.1. Approach

This module is perhaps the most complex of all modules due to the inherent
complexity of the Transmission Control Protocol (TCP). As such, the main design
concern was to compartmentalise the complex functionality around more simplistic
functionality--i.e. to firewall. There are three main architectural groups--status and
connection processing, management with database storage and data processing. These
are specifically divided into the following blocks:

�� Connection Manager to process status, connect and disconnect messages
from both the Upper Layer and from the Network Layer. This includes
setting up and clearing a Transport Session.

 47

�� Management Processing to process messages that arrive from
Management--currently, this only affects the Initial Sequence Number.

�� Transmission Control Protocol Processor as the block within with the TCP
protocol is executed. This block is separated from other blocks in such a
manner that any transport protocol can be placed into here.

�� Transport Interface to provide the interface between the transport protocol
specific (TCP) processing, and the Upper Layer. This consists of shuttling
data between itself and the transport protocol (i.e. TCP).

�� Network Interface to process arrived Data messages from the Network
Layer and departing Data messages for the Network Layer. This consists of
extracting and encapsulating (respectively) the transport protocol (i.e. TCP)
specific information out of, or in to, Network Layer messages.

The two interfaces were purposely developed to hide Upper and Lower Layer
specifics from the transport protocol. This allows for the transport protocol to be
developed as a fairly separate entity and, further, to facilitate drop in replacement of
other transport protocols: without affecting external modules. These functional
groupings are shown in the architectural diagram in Figure 1-2.17.

Connection
Manager

Transport
Interface

Transmission
Control
Protocol

Processor

Network
Interface

Database

Management
Processing

Setup

Data

Data

Data

Data

Control

Config + State

Config + State

Figure 1-2.17. Transport Layer: Architecture

Status

Status

2.3.3.3.2. Data Flow Diagrams and Process Specifications

 48

Detailed design information is given in Appendix 1.

2.3.3.4. Additional notes

The following issues were addressed in the design.

�� Possible additional interpretation of Network Messages -- The partitioning
of processing for Network Messages is such that modification and/or
addition of new functionality is trivial.

�� Use of type switching for Messages and IEs -- The switches that classify
Messages and Information Elements are such that they can be used on
hierarchically typed data structures, an inherent ability for BONeS.

�� Use of primitive accessors -- At all times, accessors are used to manipulate
Data Structures.

�� Placement of simulation Probes -- A number of stubs have been put into
place to facilitate points at which Probes can be added for the purposes of
collecting data during simulations.

�� Separation of core Transport Protocol -- The Transport Protocol in use has
been neatly confined within a processing block in the Transport Layer;
allowing for it to be replaced with other type of Transport Protocol.

�� Consideration of the TCP Protocol as a separate entity -- For the purposes
of risk management, and implementation flexibility, the TCP Protocol is a
separate entity.

 49

2.3.4. Network-Adaption Layer

2.3.4.1. Overview

The Network-Adaption Layer is provided as a generative module for the purposes of
supporting our simulation architecture--it does not model an entity in the real world,
but exists to support our models of the real world.

Its role is to act as a bridge between an Upper Layer (usually a Generator) and the
Network Layer. There is one service provided to the Upper Layer, and that is the
transfer of a data message of specified length, via. the Network Layer (using a Data
Request). The Upper Layer is defined to be dumb, in that it has no knowledge of
Networks and the suchlike -- this is a good separation of concerns. Hence, the
Network-Adaption Layer contains and supplies the Addresses to be used in the
generation of Network Layer Data Requests.

Because the Network-Adaption Layer is used in situations where arbitrary data
messages are supplied to the network, and due to specific requirements for our
simulations, a list of Addresses can be specified. A single Address is selected
randomly from the list for each Data Request that is constructed. This allows for the
Network-Adaption Layer to be used in the construction of a composite entity that can
"spray" Data Requests to various destinations in a random fashion--exactly what we
need for generating background traffic in our simulations.

As with other modules, configuration can be carried out by way of the Management
entity. The only parameter of concern in this module is the just indicated Address List
used in Data Request generation. There are two reasons for configuration in this
manner. The first is that it is much easier and flexible to configure a list of items from
a file rather than having to manually enter them in a static simulation set up. Secondly,
there are envisaged situations where during the execution of a simulation, the address
list may be required to change to contrive specific conditions.

Internally, the Network-Adaption Layer is simple in construction. It has been left with
an open architecture to facilitate expansion, as is the general methodology employed
in the construction of all modules. There have been specific considerations given to
requirements for simulations in that apparently redundant processing paths are evident
as places for probe attachments.

2.3.4.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The
treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.4.2.1. Relationships

There are three entities that communicate with the Network-Adaption Layer. The first
one is, as with most other modules, the Management entity. It is from this that
Management Messages originate destined for the Network-Adaption Layer: they
perform some kind of operation. The next entity is an Upper Layer that provides an

 50

abstract item of Data, this Data is modelled by its Length--there is no need to have
actual data per se. The third entity is a Network Layer, which the Network-
Adaption Layer uses to transmit and receive Data Messages to other network
connected peers.

Figure 1-2.18 illustrates the entities and their relationships.

Management

Upper Layer

0.
Network

Adapation
Layer

Network
Layer

Management
Message

Data
Length

Network
Message

Figure 1-2.18. Network-Adaption Layer: Context Diagram

Table 1-2.10 details the roles and information communicated between entities.

Name Role Communicated Information
Upper Layer Provides data elements to be

transferred via Network Layer
Data Length to be sent

Network Layer Acts as the delivery agent for
the data elements

Network Layer Messages, Data
and Status information

Management Modifies the behaviour of the
Network-Adaption Layer

Management Messages, with
IEs

Table 1-2.10. Network-Adaption Layer: Entity Relationships

Table 1-2.11 outlines the data.

 51

Name Content Purpose
Network Connect Indication Message Null Indicates that Network Layer is

able to send messages
Network Disconnect Indication
Message

Null Indicates that Network Layer is
unable to send messages

Network Status Indication Message IE Indicates status information
about Network Layer

Network Data Request Message Length,
Content

Requests transfer of data
elements via Network Layer

Network Data Indication Message Length,
Content

Indicates arrival of data
elements via Network Layer

Data Length Integer Length of data to transfer
Management Set Indication Message IE Provides IEs to modify

behaviour
Network-Adaption Address List IE List of

Address
Indicates Addresses to be used
in delivery of data elements

Table 1-2.11. Network-Adaption Layer: Data Relationships

Any other data that arrives from external entities to the Network-Adaption Layer is
ignored.

2.3.4.2.2. Parameters

Apart from the mandatory Address, there are no externally visible parameters for the
Network-Adaption Layer. However, the Address List is an internal parameter that is
directly modifiable by Management, therefore it is considered an externally visible
parameter--just indirectly accessed. The parameters are shown in Table 1-2.12.

Name Purpose Values Default Example
Address Allow messages to be directed to this

module
Integer 0 10

Address
List

Used to destinations for outgoing data
messages

Set:
Integer

0 1,2,3,4

Table 1-2.12. Network-Adaption Layer: Parameters

2.3.4.2.3. Behaviour

�� Network Data Indication Message Input

This message arrives from the Network Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

�� Network Connect Indication Message Input

When this message is received, it is a notification that the Network Layer is
active. From this point onwards, until the reception of a Network Disconnect
Indication Message, the Network-Adaption Layer will transmit messages to
the Network Layer (when it needs to).

 52

�� Network Disconnect Indication Message Input

When this message is received, it is a notification that the Network Layer is
inactive. From this point onwards, until the reception of a Network Connect
Indication Message, the Network-Adaption Layer will not transmit any
messages to the Network Layer--even if the Upper Layer requests such an
action.

�� Network Status Indication Message Input

This message arrives from the Network Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

�� Data Length Input

The Upper Layer indicates the length of an item of data as a request for the
transmission of an element of Data of that length. The Network-Adaption
Layer will first check to see whether or not the Network Layer is able to
receive messages (i.e. as a result of Connect/Disconnect notifications). If it is,
then a Network Data Request Message is generated with the Data Length and
with a random Address selected from the Address List that was configured by
Management. The message is then sent to the Network Layer.

�� Management Set Indication Message Input

The message is first verified to ensure that its Destination Address corresponds
to the Network-Adaption Layer's Address. If it is not destined for this Address,
then it is discarded. If accepted, the Information Element in the message is
extracted and processed according to its type:

�� Network-Adaption Address List IE -- The contents of this IE are a set of
Addresses to be used for outgoing Network Data Request Messages.
When such a message is created, a random Address is selected from this
list. Note that if only one Address is present in the list then it will always
be used as the selected Address.

�� Network Data Request Message Output

This output occurs as a result of processing the Data Length input from the
Upper Layer. The Network-Adaption Layer expects the Network Layer to, or
at least attempt to, deliver this message to the Address specified in the creation
of the message.

2.3.4.2.4. Data Accessors

The only Network-Adaption Layer specific data is the Network-Adaption Address List
IE, which is generated by Management and processed by the Network-Adaption
Layer.

Name
Construct IE Network-Adaption Address List
Extract IE Network-Adaption Address List

 53

2.3.4.2.5. Dependencies

Due to the use of the Management and Network Layer entities are required by the
Network-Adaption Layer.

Name
Extract Message Management Set Indication
Construct Message Network Data Request
Construct Message Application Data
Extract Message Network Connect Indication
Extract Message Network Disconnect Indication
Extract Message Network Status Indication
Extract Message Network Data Indication

2.3.4.2.6. Initialisation

The initial state of the Network-Adaption Layer is that it is presumed that the Network
Layer is not active. Also, the Address List has no entries. The Address of the Network-
Adaption Layer must be defined if any Management Messages are to be received.

2.3.4.3. Internal Design

2.3.4.3.1. Approach

The internal functionality was divided into the three main processing blocks:

�� Inbound Processing to process messages that arrive from the Network
Layer. This includes classification of the message, and extraction and
interpretation of its content--affecting the known state of the Network
Layer.

�� Outbound Processing to process the Data Length request from the Upper
Layer by constructing an outgoing Network Data Request Message with
appropriate Length and randomly selected Address from the Address List.

�� Management Processing to process messages that arrive from
Management--currently only affecting the Address List.

These functional groupings are shown in the architectural diagram in Figure 1-2.19.

 54

Inbound
Processing

Outbound
Processing

Management Processing

Database

data

data

config

config +
status

da
ta

 +
st

at
us

Figure 1-2.19. Network-Adaption Layer: Architecture

2.3.4.3.2. Data Flow Diagrams and Process Specifications

Detailed design information is provided in Appendix 1.

2.3.4.4. Additional notes

The following issues were addressed in the design.

�� Possible additional control via Management -- The construction of
management processing allows for new functionality to be added with
minimal disruption to the existing design.

�� Possible additional interpretation of Network Messages -- The inclusion of
stub modules allows for the insertion of processing for the Network Layer
messages that are currently not examined.

�� Use of type switching for Messages and IEs -- The switches that classify
Network Layer Messages and Information Elements are such that they can
be used on hierarchically typed data structures, an inherent ability for
BONeS.

�� Consistent architectural split -- The same architectural split has been
employed as with most other modules; in terms of input, output and
management delineation.

�� Use of primitive accessors -- At all times, accessors are used to manipulate
data structures.

�� Placement of simulation Probes -- A number of stubs have been put into
place to facilitate points at which Probes can be added for the purposes of
collecting data during simulations.

 55

2.3.5. Transport-Adaption Layer

2.3.5.1. Overview

The Transport-Adaption Layer is provided as a generative module for the purposes of
supporting our simulation architecture--it does not model an entity in the real world,
but exists to support our models of the real world.

Its role is to act as a bridge between an Upper Layer (usually a Generator) and the
Transport Layer. There is one service provided to the Upper Layer, and that is the
transfer of a data of a specified length, via the Transport Layer (using a Data Request).
The Upper Layer is defined to be dumb, in that it has no knowledge of Networks and
the suchlike -- this is a good separation of concerns. The Transport-Adaption Layer
must also initiate and terminate Transport Layer associations; hence it is capable of
Connecting and Disconnecting Transport Sessions in response to Management
requests. When connecting, the Connect Request sent to the Transport Layer will
contain the Address for which the Transport Session is peered with.

Internally, the Transport-Adaption Layer is simple in construction. It has been left
with an open architecture to facilitate expansion, as is the general methodology
employed in the construction of all modules. There have been specific considerations
given to requirements for simulations in that apparently redundant processing paths
are evident as places for probe attachments.

2.3.5.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The
treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.5.2.1. Relationships

There are three entities that communicate with the Transport-Adaption Layer. The
first one is, as with most other modules, the Management entity. It is from this that
Management Messages originate, destined for the Transport-Adaption Layer: they
perform some kind of operation. The next entity is an Upper Layer that provides an
abstract item of Data, this Data is modelled by its Length--there is no need to have
actual data per se. The third entity is a Transport Layer, which the Transport-
Adaption Layer uses to transmit and receive Data, Connect and Disconnect Messages.

Figure 1-2.20 illustrates the entities and their relationships.

 56

Management

Upper Layer

0.
Transport
Adaption

Layer

Transport
Layer

Management
Message

Data
Length

Transport
Message

Figure 1-2.20. Transport-Adaption Layer: Context Diagram

Table 1-2.13 details the roles and information communicated between entities.

Name Role Communicated Information
Upper Layer Provides data elements for

transport
Data Length, size of the element

Transport
Layer

Acts as the delivery agent for
the data elements

Transport Messages, either
setup/teardown or data

Management Modifies behaviour of the
Transport-Adaption Layer

Management Messages with IEs

Table 1-2.13. Transport-Adaption Layer: Entity Relationships

Table 1-2.14 outlines the data.

 57

Name Content Purpose
Transport Connect Request Message Address Requests establishment of

transport session to address
Transport Disconnect Request Message Null Requests termination of current

transport session
Transport Data Request Message Length Requests transfer of length of

data on current session
Transport Data Indication Message Length Indicates arrival of length of

data on current session
Management Set Indication Message IE Conveys changes for Transport-

Adaption Layer
Transport-Adaption Connect IE Address Requests setup to Address to be

carried out
Transport-Adaption Disconnect IE Null Requests teardown to be carried

out
Data Length Integer Length of data to be transferred

Table 1-2.14. Transport-Adaption Layer: Data Relationships

Any other data that arrives from external entities to the Transport-Adaption Layer is
ignored.

2.3.5.2.2. Parameters

Apart from the mandatory Address, there are no externally visible parameters for the
Transport-Adaption Layer. The parameters are shown in Table 1-2.15.

Name Purpose Values Default Example
Address Allow messages to be directed to this

module
Integer 0 10

Table 1-2.15. Transport-Adaption Layer: Parameters

2.3.5.2.3. Behaviour

�� Transport Data Indication Message Input

This message arrives from the Transport Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

�� Transport Connect Indication Message Input

This message arrives from the Transport Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

�� Transport Disconnect Indication Message Input

This message arrives from the Transport Layer. There is currently no defined
processing for it, so the message is ignored. A stub module is provided for the
addition of processing, if needed.

 58

�� Data Length Input

The Upper Layer provides a Data Length as a request for the transmission of
an element of Data of that length. The Transport-Adaption Layer will generate
a Transport Data Request Message with the specified Data Length. The
message is then sent to the Transport Layer.

�� Management Set Indication Message Input

The message is first verified to ensure that its Destination Address corresponds
to the Transport-Adaption Layer's Address. If it is not destined for this
Address, then it is discarded. If accepted, the Information Element in the
message is extracted and processed according to its type:

�� Transport-Adaption Connect IE -- The content of this IE is a single
Address. This is used in the construction of a Transport Connect Request
Message that is sent to the Transport Layer as a request for a session to
be established to the peer Address.

�� Transport-Adaption Disconnect IE -- There is no content in this IE.
When it is received, a Transport Disconnect Request Message will be
sent to the Transport Layer as a request for the current session to be
terminated.

�� Transport Data Request Message Output

This output occurs as a result of processing the Data Length input from the
Upper Layer. The Transport-Adaption Layer expects the Transport Layer to
deliver this message via the currently active Transport Session [as configured
via. a Connect message].

�� Transport Connect Request Message Output

This output occurs as a result of processing a Transport-Adaption Connect IE
received from Management. It instructs the Transport Layer to establish a
Transport Session with another Transport Layer at the Address specified in the
message.

�� Transport Disconnect Request Message Output

This output occurs as a result of processing a Transport-Adaption Disconnect
IE received from Management. It instructs the Transport Layer to terminate the
current Transport Session.

2.3.5.2.4. Data Accessors

There are two data items that are specific to the Transport-Adaption Layer.

Name
Construct IE Transport-Adaption Connect
Extract IE Transport-Adaption Connect
Construct IE Transport-Adaption Disconnect
Extract IE Transport-Adaption Disconnect

 59

2.3.5.2.5. Dependencies

Due to the use of the Management and Transport Layer entities modules are required
by the Transport-Adaption Layer.

Name
Extract Message Management Set Indication
Construct Message Transport Data Request
Construct Message Transport Connect Request
Construct Message Transport Disconnect Request
Extract Message Network Connect Indication
Extract Message Network Disconnect Indication
Extract Message Network Data Indication

2.3.5.2.6. Initialisation

The Address of the Transport-Adaption Layer must be defined if any Management
Messages are to be received.

2.3.5.3. Internal Design

2.3.5.3.1. Approach

The internal functionality was divided into the three main processing blocks:

�� Inbound Processing to process messages that arrive from the Transport
Layer. This includes classification of the message, and extraction and
interpretation of its content.

�� Outbound Processing to process the Data Length request from the Upper
Layer by constructing an outgoing Transport Data Request Message of
appropriate length.

�� Management Processing to process messages that arrive from
Management--these result in the transmission of Connect and Disconnect
Messages to the Transport Layer.

These functional groupings are shown in the architectural diagram in Figure 1-2.21.

 60

Inbound
Processing

Outbound
Processing

Management Processing

Database

data

data

config

config +
status

da
ta

 +
st

at
us

Figure 1-2.21. Transport-Adaption Layer: Architecture

2.3.5.3.2. Data Flow Diagrams and Process Specifications

Detailed design information is provided in Appendix 1.

2.3.5.4. Additional notes

The following issues were addressed in the design.

�� Possible additional control via Management -- The construction of
management processing allows for new functionality to be added with
minimal disruption to the existing design.

�� Possible additional interpretation of Transport Messages -- The inclusion of
stub modules allows for the insertion of processing for the Transport Layer
messages that are currently not examined.

�� Use of type switching for Messages and IEs -- The switches that classify
Transport Layer Messages and Information Elements are such that they can
be used on hierarchically typed data structures, an inherent ability for
BONeS.

�� Consistent architectural split -- The same architectural split has been
employed as with most other modules; in terms of input, output and
management delineation.

�� Use of primitive accessors -- At all times, accessors are used to manipulate
data structures.

�� Placement of simulation Probes -- A number of stubs have been put into
place to facilitate points at which Probes can be added for the purposes of
collecting data during simulations.

 61

2.3.6. Routing-Module

2.3.6.1. Overview

The Routing-Module is directly modelled from a real world entity. In the real world,
routing is performed at the Network Layer. This involves an entity that receives
messages from a set of Network Layers, and then delivers them back to the same set
of Network Layers. However, the specific source and destination Network Layer for a
specific message are not necessarily the same; the destination is generally decided by
some kind of routing strategy.

This entity, a routing engine, can decide a destination based upon several sources of
information. Generally, a routing table is specified indicating which Interface--
Network Layer--is able to deliver the message to its ultimate destination--determined
by an Address in the message: it may also contain other information to be used. The
routing table may be statically defined, or subject to automated periodic updates (e.g.
RIP, OSPF). However, the generally represent a medium to long-term determinant in
the routing algorithm. More short-term information may be used, such as the state and
load of a particular Interface.

Essential, the routing engine is a Layer 3 bridge. In an ideal environment, there is no
distinction between a Network Layer in communication with a Transport Layer, or a
Routing Module (or any other Layer, for that matter).

The model of the Routing-Module for our environment retains the key features just
mentioned. It is connected to a number of Network Layers, and receives both Data and
Status messages from these Layers. Data messages are routed via a conceptual routing
engine and sent back to another Network Layer; whereas Status messages are used to
update the known status of the Layer. The routing engine uses a table of routing
entries, along with this status information, to determine which Network Layer should
be the recipient of the message being routed--i.e. the routing algorithm.

Our model of a routing algorithm is inline with contemporary methods. The routing
table entries define an Address, an Interface and a Cost. Each entry is only applicable
to messages with a destination address corresponding to Address. As such, there may
be a number of interfaces available for any given Address; hence some form of
discrimination is required--noting that if a given Network Layer is unavailable, then
entries corresponding to its Interface are ignored. The Cost is used with the current
Load of the Interface and a scaling factor to compute a weight. The entry with the
lowest weight, and generally the lowest queue size, is selected as the applicable
routing entry--and therefore a provider of the Interface to which the messages is then
directed to. The routing algorithm can be specified as follows:

 62

1. Locate all Routes in the Routing Table with an Address equal to the Message’s
Destination Address and with an Interface that has an Active Availability
Status.

2. For each Route that was located, select the one with the Minimum Cost; using
the algorithm: COMPUTED COST := COST + ((INTERFACE LOAD) * BETA).

 With the following qualifications:

�� Routes are entries in the Routing Table that contain an Address, Interface and
Cost.

�� An Address is the address of a specific End System as contained in all
Messages being routed.

�� An Interface denotes a specific local Network Layer.

�� The Cost is a specifically assigned weighing factor.

�� The Availability Status is a list indicating wether a specific Interface is Active
or Inactive.

�� The Interface Load represents the current Load of an Interface as stored in the
list.

The routing algorithm is simplistic and subject to caveats, yet it serves the
requirements neatly. One specific requirement was for routing to be dynamic as a
result of local congestion, which manifests itself by way of queue loading values.
Therefore, with correct configuration, the destination for a message with a given
address can be selected from a set of routing entries in such a way that it does
alternate in output interface.

If no route exists for a given message, then it is discarded--there is no other option.
Most real world routers have a default route, which is the last result if no others can be
located. Additionally, the routing module is the place in which hop count checking
occurs. Each message has a Hop Count that decrements as the message passes through
intermediate systems. When the Hop Count reaches zero, the message is discarded.

Configuration of the Routing-Module is only concerned with routing table entries.
The purpose here is to allow for these entries to be dynamically altered, so that
specific situations can be contrived. The scaling factor used in the routing algorithm is
fixed, and the interface status information is subject to update from Network Layer
originated status messages.

The Routing-Module has simple operation. Fundamentally, it is a switch so there is a
central point at which switching occurs. The surrounding framework is concerned
with mapping to and from the Network Layers in an abstract and extensible manner,
along with providing database functionality for the Network Layer state and Routing-
Module configuration information.

2.3.6.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The

 63

treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.6.2.1. Relationships

The Routing-Module is conversant with a number of entities; however these are
logically represented as two classes of entities. The first class is a single Management
entity that provides Management Messages to perform internal operations on the
Routing-Module. The second type of entity is a set of Network Layers; these are
viewed as a single parameterised Network Layer. Data Messages are received from a
Network Layer, and transmitted to another Network Layer. Status information is also
extracted from Network Layer messages and used.

Figure 1-2.22 illustrates the entities and their data relationships.

0.
Routing
Module

Management

Network Layer
<X>

Management
Message

Network
Message

<X>

Figure 1-2.22. Routing-Module: Context Diagram

Table 1-2.16 details the roles and information communicated between entities.

Name Role Communicated Information
Network Layer
<X>

Act to transfer messages across
network paths

Network Layer Messages, both
Status and Data information

Management Modifies operation of Routing
Module

Management Messages with IEs

Table 1-2.16. Routing-Module: Entity Relationships

Table 1-2.17 outlines the data.

 64

Name Content Purpose
Network Connect Indication Message Null Indicates that specific Network

Layer is able to send messages
Network Disconnect Indication
Message

Null Indicates that specific Network
Layer is not able to send
messages

Network Status Indication Message IE Indicates status information
about specific Network Layer

Network Data Request Message Address,
Content,
Length

Request transfer of message by
Network Layer to given address

Network Data Indication Message Address,
Content,
Length

Indicate reception of message by
Network Layer destined for
Address

Management Set Indication Message IE Provides IEs that modify
Routing Module operation

Routing-Module Routing Entry IE Address,
Interface,
Cost

Specify routing entry for use in
routing arrived messages

Table 1-2.17. Routing-Module: Data Relationships

Any other data that arrives from external entities to the Routing-Module is ignored.

2.3.6.2.2. Parameters

Apart from the mandatory Address, there are no externally visible parameters for the
Routing-Module. However, the Routing Table Entries are internal parameters that are
directly modifiable by Management, therefore they are considered an externally
visible parameter--just indirectly accessed. The parameters are shown in Table 1-2.18.

Name Purpose Values Default Example
Address Allow messages to be directed to this

module
Integer 0 10

Routing-
Table
Entry

Contain tuple of Address, Interface and
Cost for directing messages

Set:
(Integer,
Integer,
Real)

Null (10,
 1,
 0.5)

Table 1-2.18. Routing-Module: Parameters

2.3.6.2.3. Behaviour

�� Network Data Indication Message Input

This Indication arrives from the Network Layer. It is first processed by a
Network Layer Interface that passes it to a central Routing Processor. This
Routing Processor will use the Address of the message, the currently defined
Routing Table, the known state of a particular interface, and the known load
on a particular interface to compute a new destination Network Layer. The
Indication is then passed to that Network Layer as a Request.

 65

The Indication may be discarded if it is found that it has passed through too
many Hops (a Hop Count is specified in the Indication and is used to ensure
that messages do not loop indefinitely in the network). It may also be
discarded if no Route is found.

�� Network Connect Indication Message Input

When this message is received, it is a notification that the Network Layer is
active. The respective Network Layer Interface updates a database entry to
indicate that the Layer is active and able to have messages directed towards it.

�� Network Disconnect Indication Message Input

When this message is received, it is a notification that the Network Layer is
inactive. The respective Network Layer Interface updates a database entry to
indicate that the Layer is inactive and therefore cannot have messages directed
towards it.

�� Network Status Indication Message Input

This message arrives from the Network Layer. It contains an indication of the
current load state of the queues at the Network Layer normalised to be a real
number between 0 and 1. The respective Network Layer Interface updates a
database entry with this load which is used in route computation to aid in the
selection of an route.

�� Management Set Indication Message Input

The message is first verified to ensure that its Destination Address corresponds
to the Routing-Module's Address. If it is not destined for this Address, then it
is discarded. If accepted, the Information Element in the message is extracted
and processed according to its type:

�� Routing-Module Routing Entry IE -- The contents of this IE are a tuple
of values to define a Routing Entry. This tuple consists of the Address
that the route is for, the Interface to be used for the route, and a Cost
factor associated with the route.

�� Network Data Request Message Output

This output occurs as a result of the routing of an input. The Network Layer is
expected to deliver this message to the Address specified in the message.

2.3.6.2.4. Data Accessors

The only Routing-Module specific data is the Routing-Module Routing Entry IE,
which is generated by Management and processed by the Routing-Module.

Name
Construct IE Routing-Module Route Entry
Extract IE Routing-Module Route Entry

2.3.6.2.5. Dependencies

 66

Due to the use of the Management and Network Layer entities are required by the
Routing-Module.

Name
Extract Message Management Set Indication
Convert Message Network Data Indication To Request
Construct Message Network Data Request
Construct Message Application Data
Extract Message Network Connect Indication
Extract Message Network Disconnect Indication
Extract Message Network Data Indication
Insert Message Network Data Indication
Extract Message Network Status Indication

2.3.6.2.6. Initialisation

Each of the Network Layers is presumed to be inactive. Also, the Routing Table is
empty, and the load of each Network Layer is presumed zero. The Address of the
Routing-Module must be defined if Management Messages are to be received.

2.3.6.3. Internal Design

2.3.6.3.1. Approach

Internally, the Routing-Module consists of several core processing blocks, these are:

�� Management Processing to process messages that arrive from Management,
which currently are only defined to update the routing table.

�� Routing Engine to route Network Layer Data Messages by accepting an
input Network Data Indication Message and routing according to Routing
Tables and other conditions (such as the state and load of a particular
Network Layer).

�� Network Interface to interface to each particular Network Layer connected
to the Routing Module. Messages from each Network Layer are used to
update network state and load information, along with being passed into, or
accepted from, the Routing Engine.

The architecture is specifically designed so that Network Interfaces are aggregated in a
manner that allows for easy expansion. It was also deemed important to separate the
management entity and to provide a central abstract switching point that is not limited
by any external components. These functional groupings are shown in the
architectural diagram in Figure 1-2.23.

 67

Network
Interface 1

Network
Interface 2

Network
Interface 3

Network
Interface 4

Routing Engine

Database

Data

Status

Management
Processing

Network Msgs Network Msgs Network Msgs Network Msgs

Routes

Figure 1-2.23. Routing-Module: Architecture

2.3.6.3.2. Data Flow Diagrams and Process Specifications

Detailed design information is provided in Appendix 1.

2.3.6.4. Additional notes

The following issues were addressed in the design.

�� Possible additional control via Management -- The construction of
management processing allows for new functionality to be added with
minimal disruption to the existing design.

�� Possible additional interpretation of Network Messages -- The inclusion of
stub modules allows for the insertion of processing for the Network Layer
messages that are currently not examined.

�� Use of type switching for Messages and IEs -- The switches that classify
Network Layer Messages and Information Elements are such that they can
be used on hierarchically typed data structures, an inherent ability for
BONeS.

�� Use of primitive accessors -- At all times, accessors are used to manipulate
data structures.

�� Placement of simulation Probes -- A number of stubs have been put into
place to facilitate points at which Probes can be added for the purposes of
collecting data during simulations.

�� Additional Network Layers -- The Network Layers are parameterised in
such a way that it is trivial to insert new Network Layers by merely
duplicating Network Interfaces.

 68

�� Modifications to Routing Algorithm -- The Compute Next Hop and
Compute Cost processes in the Routing Module have been abstracted so
that it is possible to modify them without any surrounding alteration.

 69

2.3.7. Generator

2.3.7.1. Overview

The Generator models a source of traffic in the real world. An example of such an
entity in the real world is an application; which is exactly the type of entity we desired
to have modelled from the real world for the purpose of simulating.

The role of the Generator is to provide abstract elements of data (represented as a
length of data---the content is irrelevant) at periodic intervals. The behaviour of this
generation is described by its temporal and spatial characteristics---the time periods
between data output, and the length at each output. This behaviour can be configured.

The configuration occurs by way of the Management entity. It is able to construct a
request that describes a specific behavioural pattern that is to be used for the
generation of output. There are two classes of patterns: real world samples and
statistical profiles. The first consists of measured FTP and Telnet characteristics, and
the second of Constant, Normal, Uniform, Exponential and Poisson variables. The
generation of output in accordance to this behaviour will continue until a limit is
reached (defined as a length of time, a total length, or a number of outputs) or a
specific stop is requested---the second possible request from the Management entity.

Internally, the construction of the Generator is partitioned in such a way that it allows
for ease of expansion. To produce the FTP and Telnet characteristics, the TCPLIB
(TCPLIB) package is used. It can, when provoked, construct a variable corresponding
to measured characteristics.

2.3.7.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The
treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.7.3. Relationships

The Generator concerns itself with only two external entities. The first of which is the
Management entity, which sets up the Generator to operate with a specific behaviour.
The second is the Lower Layer, which is the recipient of the data lengths that are
generated.

Figure 1-2.24 illustrates the entities and their data relationships.

 70

0.
Generator

Management

Lower Layer

Management
Message

Data
Length

Figure 1-2.24. Generator: Context Diagram

Table 1-2.19 details the roles and information communicated between entities.

Name Role Communicated Information
Lower Layer Accepts unit data elements Data Length
Management Modifies behaviour of the

Generator
Management Messages with
IEs

Table 1-2.19. Generator: Entity Relationships

Table 1-2.20 outlines the data.

Name Content Purpose
Management Set Indication Message IE Provides IEs used to setup and

stop the Generator
Generator Stop IE Null Requests that output stop
Generator Setup Telnet IE Filter Info Requests initiation of Telnet

profile generation
Generator Setup FTP IE Filter Info Requests initiation of FTP

profile generation
Generator Setup Statistical IE Filter Info,

Stat Info
Requests initiation of Statistical
profile generation

Table 1-2.20. Generator: Data Relationships

Any other data that arrives from the external entities to the Generator is ignored.

2.3.7.3.1. Parameters

 71

Apart from the mandatory Address, there are no externally visible parameters for the
Generator. The parameters are shown in Table 1-2.21.

Name Purpose Values Default Example
Address To address messages to this module Integer 0 10

Table 1-2.21. Generator: Parameters

2.3.7.3.2. Behaviour

�� Management Set Indication Message Input

The message is first verified to ensure that its Destination Address corresponds
to the Generator's Address. If it is not destined for this Address, then it is
discarded. If accepted, the Information Element in the message is extracted,
and processed according to its type:

�� Generator Setup Telnet IE -- The Generator is configured to produce
Data Output using samples of Telnet characteristics. This IE also
contains Filter parameters.

�� Generator Setup FTP IE -- The Generator is configured to produce Data
Output using samples of FTP characteristics. This IE also contains Filter
parameters.

�� Generator Setup Statistical IE -- The Generator is configured to produce
Data Output according to a defined statistical profile. There are two
characteristics present, one is for the temporal behaviour (time between
generation) and the other is for the spatial behaviour (the size of each
item generated). The profiles can be Constant, Normally Distributed,
Uniformly Distributed, Exponentially distributed or Poisson variables --
each have a specific set of parameters. This IE also contains Filter
parameters.

�� Generator Stop IE -- The Generator will stop producing output.

�� Data Length Output

This output occurs as a result of the Generator constructing it using its current
configuration.

2.3.7.3.3. Data Accessors

For constructing and deconstructing data that flows into and out of the Generator, a
number of accessors are designed to encapsulate the direct access to the data.

 72

Name
Construct IE Generator Setup Telnet
Construct IE Generator Setup FTP
Construct IE Generator Setup Statistical
Construct IE Generator Stop
Extract IE Generator Setup Telnet
Extract IE Generator Setup FTP
Extract IE Generator Setup Statistical
Extract IE Generator Stop

2.3.7.3.4. Dependencies

The Generator requires external modules.

Name
Extract Message Management Set Indication
TCP Library
Statistical

2.3.7.3.5. Initialisation

The Address of the Generator must be defined if any Management Messages are to be
received.

2.3.7.4. Internal Design

2.3.7.4.1. Approach

The internal architecture is partitioned into the following main processing blocks:

�� Setup Generator as an entity to accept and process the Setup IEs arriving
from Management, and thence to extract the profile and filter parameters
and use these to start and operate an instance of generator activity.

�� Stop Generator as an entity to accept and process the Stop IEs arriving from
Management, and thence to actually stop any current generator activity that
may be in operation.

The partitioning occurred largely due to the internal partitioning requirements of the
Setup Generator where all specific instances of processes that can generate data are
subject to filtering. Hence, it was appropriate not to "mix" this level with that above.

2.3.7.4.2. Data Flow Diagrams and Process Specifications

Detailed design information is provided in Appendix 1.

2.3.7.5. Additional notes

The following issues were addressed in the design.

 73

�� Possible additional control via. Management -- The Management
processing is such that additional IE's could be processed with a minimum
of disturbance to the current design.

�� Possible additional types of generation -- The parsing of the Setup IE is
such that additional classifications of Setup IE could be processed and thus
there could be additional types of parameters that could be generated. It was
envisaged that HTTP characteristics could be added here, but none were
available to date.

�� Possible expansion of Statistical Types -- The use of the abstract Statistical
module allows for internal changes to be carried out such that additional
statistical types could be added without having to modify the Generator at
all.

�� Non-Network aware design -- The design is such that the Generator has no
knowledge of other Modules other than its Management controller. The
purpose of this is to allow the Generator to be re-used in various ways in
the environment.

2.3.7.6. The TCB Library

The TCP Library (TCPLIB) is a software program developed as a result of collecting
Wide-Area Traffic statistics for various protocols that use TCP as a transmission
agent. The purpose of the library is to provide actual samples, as collected, of specific
characteristics of the measured protocols. The importance is that it directly uses
known samples, as opposed to modelling these via a statistical mechanism.

The library provides abstract function hooks that allow for the retrieval of a random
variable based on the known samples. For each protocol (e.g. Telnet (RFC854, 1983),
FTP (RFC959, 1985), SMTP (RFC821, 1982) and so on) there are a number of
characteristics that have been collected. In the case of Telnet, for example, there is a
packet inter-arrival time, a packet size, and a conversation length.

Software can make use of these simply by calling the function hooks, and the
implementation must make use of the 'C' interface to BONeS for this ability. The
interface is simple, as the there is no input, and only an "integer" or "real" output.

 74

2.3.8. Management

2.3.8.1. Overview

Management is a module specifically for the purpose of managing other modules in
the simulation environment. It does not model a specific entity in the real world,
although many OSI based architectures do have the notion of just such a management
entity, our purpose here is slightly different. This module is constructed to serve the
requirements of dynamic control during the execution of a simulation.

The functionality of Management is to construct and transmit Information Elements
(IEs) at a specific time to a specific destination. The time, destination and IE contents
are read from a file. Management carries out a process of reading each item
individually to build up the required elements in the IE. Error checking is performed
to cope with short file reads and erroneous content.

Internally, the construction was specifically done in such a way to allow for the
expansion of Management both in terms of the modules that can be managed, and the
IEs that can be sent to these modules.

2.3.8.2. External Interface

The external interface defines this entity as seen by other entities in the architecture
and provides a concrete position from which to design the internal construction. The
treatment of the external interface requires delineation of the other entities that are
communicated with, the elements used for such communication, and the behavioural
aspects of the communication.

2.3.8.2.1. Relationships

Management communicates with two classes of external entities. The first class,
which has only one entry, is an initialisation subsystem which is able to kick start
Management as the first thing in the execution of a simulation. This ensures that
Management starts reading the file. The second class consists of every other module in
the simulation environment. In the case of the latter, a module is qualified by a unique
Address: Management will send a Message to a module with a specified Address.

Figure 1-2.25 illustrates the entities and their data relationships.

 75

0.
Management

Initialisation

Module
<X>

Startup

Management
Message

Figure 1-2.25. Management: Context Diagram

Table 1-2.22 details the roles and information communicated between the entities.

Name Role Communicated Information
Module <X> Accepts Management Messages

that change Module’s behaviour
Management Message, with IEs

Initialisation Starts up the Management
module

Startup, initial control kick

Table 1-2.22. Management: Entity Relationships

Table 1-2.23 outlines the data.

 76

Name Content Purpose
Startup Null Start up processing
Management Set Indication Message Address,

IE
Indicate IE that Address should
process

Transport-Adaption Connect IE Address Tell Transport-Adaption Layer
to connect session to address

Transport-Adaption Disconnect IE Null Tell Transport-Adaption Layer
to disconnect session to address

Network-Adaption Address List IE List of
Address

Tell Network-Adaption Layer
list of addresses to be used for
messages

Datalink State IE Boolean Tell Datalink Layer to be active
or inactive

Transport Setup IE ISN Tell Transport Layer the ISN to
use for setup sessions

Routing-Module Routing Entry IE Address,
Interface,
Cost

Tell Routing-Module a new
routing entry to use

Generator Setup Telnet IE Filter Info Tell Generator to start
generating Telnet traffic

Generator Setup FTP IE Filter Info Tell Generator to start
generating FTP traffic

Generator Setup Statistical IE Filter Info,
Stat Info

Tell Generator to start
generating statistical traffic

Generator Stop IE Null Tell Generator to stop
generating traffic

Table 1-2.23. Management: Data Relationships

Any other data that arrives from external entities to Management is ignored.

2.3.8.2.2. Parameters

There is only one parameter that Management requires and this is shown in Table 1-
2.24.

Name Purpose Values Default Example
Filename Provide the file from which

Management commands are read.
Complete
path and
filename.

Null /tmp/sim.t
xt

Table 1-2.24. Management: Parameters

2.3.8.2.3. Behaviour

�� Startup Input

This notification arrives from an Initialisation Subsystem. It is used to open the
Management file, and to start reading entries from the file. If the file cannot be
opened, then errors will be reported.

�� Management Set Indication Message Output

 77

This message is generated as the result of an entry having been processed from
the Management file. The message contains a single Information Element (IE)
and is directed towards a specific Address. The receiving module is expected
to process this message.

2.3.8.2.4. Data Accessors

There is only one message that is particular to the Management module.

Name
Construct Message Management Set Indication
Extract Message Management Set Indication

2.3.8.2.5. Dependencies

Due to the use of external Information Elements, there are a number of external data
accessors that are required.

Name
Construct IE Transport-Adaption Connect
Construct IE Transport-Adaption Disconnect
Construct IE Network-Adaption Address List
Construct IE Datalink State
Construct IE Transport Setup
Construct IE Routing-Module Routing Entry
Construct IE Generator Setup Telnet
Construct IE Generator Setup FTP
Construct IE Generator Setup Statistical
Construct IE Generator Stop

2.3.8.2.6. Initialisation

At initialisation, an activation is given to Management so that it may begin processing
the management file.

2.3.8.3. Internal Design

2.3.8.3.1. Approach

The internal construction of the Management Module consisted of partitioning
processing procedurally. The major steps in the process are:

1. At startup, the file is opened.

2. The next entry is located, and processing is suspended until the time
indicated in the entry.

3. The destination address and module type is read from the entry.

4. The module type is used to parse the rest of the entry and construct an
Information Element (IE).

 78

5. A Management Message is constructed and sent off to the destination with
the IE.

6. Process goes back to locating another entry (Step 2).

7. Any errors that occur are reported and logged.

The segregation of the steps above was also done to ensure that processing was
partitioned into the following components (as mapped into the steps above) which are
deemed to be significant in terms of extensibility.

1. Initialisation

2. Wait

3. Get Address

4. Get IE (qualified on Address)

5. Send IE to Address

6. Iterate

7. Indicate Errors

The 4th step is where most extensions will occur, as it is the place that IEs are parsed
according to the type of module that they are destined for.

2.3.8.3.2. Data Flow Diagrams and Process Specifications

Detailed design information is provided in Appendix 1.

2.3.8.4. Additional notes

The following issues were addressed in the design.

�� Possible additional Modules -- If there were new modules added to the
environment, the modifications to insert processing for the new module
would be trivial to the current design.

�� Possible additional IEs for Modules -- The processing of more IEs within
each module are similarly trivial modification, again requiring an additional
process and a change to the switching mechanism.

�� Use of primitive accessors -- At all times, primitive accessors have been
used to encapsulate the accessing of data structures, thus allowing for
underlying data structure change without modification to existing
references.

 79

2.4. Miscellaneous Modules
The miscellaneous modules play minor, supporting, roles in the architecture.

2.4.1. Statistical Parameter

This module encapsulates the ability to generate a random number of specific type. It
includes a data structure within which the parameters for the types are hidden, and
abstract modules to take the data structure and produce an output. The following types
of parameters may be created.

�� Constant -- Create constant variable of defined value.

�� Uniform -- Create a uniformly distributed variable between given
Minimum and Maximum values.

�� Normal -- Create a normally distributed variable using given Mean and
Variance values.

�� Exponential -- Create an exponentially distributed variable of given mean
value.

�� Poisson -- Create a poisson distributed variable of given lambda value.

2.4.1.1. Data Structure

The data structure is a composite union:

 Statistical Info := Statistical Info Constant |
 Statistical Info Uniform |
 Statistical Info Normal |
 Statistical Info Exponential |
 Statistical Info Poisson.

 Statistical Info Constant := Value : REAL.

 Statistical Info Uniform := Minimum : REAL,
 Maximum : REAL.

 Statistical Info Normal := Mean : REAL,
 Variance : REAL.

 Statistical Info Exponential := Mean : REAL.

 Statistical Info Poisson := Lambda : REAL.

2.4.1.2. Functions

The externally visible functions, as shown in Table 1-2.25, are provided, with their
PSPECs outline in Appendix 1.

 80

Name and Prototype Description
Get_Statistical_Info (Statistical Info) :
Real

Given the abstract statistical information structure,
this function will generate an appropriate value for
the defined type of parameter to be created.

Create_Stat_Constant (Value) :
Statistical Info

Create an abstract statistical information structure for
the purposes of generating constant values.

Create_Stat_Uniform (Lower, Upper) :
Statistical Info

Create an abstract statistical information structure for
the purposes of generating uniformly distributed
values.

Create_Stat_Normal (Mean, Variance) :
Statistical Info

Create an abstract statistical information structure for
the purposes of generating normally distributed
values.

Create_Stat_Exponential (Mean) :
Statistical Info

Create an abstract statistical information structure for
the purposes of generating exponentially distributed
values.

Create_Stat_Poisson (Lambda) :
Statistical Info

Create an abstract statistical information structure for
the purposes of generating poisson distributed
values.

Table 1-2.25. Statistical Parameter: Functions

The concerns in constructing this were:

�� Ease of inserting new statistical parameter; by just inserting another field
into the composite union and providing another function to compute the
value.

�� Ability to use BONeS type determination mechanisms to classify the
composite union -- this parallels polymorphic behaviour with virtual tables.

�� Ability to use BONeS data hierarchy and inheritance to define a composite
union.

 81

2.4.2. Probe - Transport Layer TCP

2.4.2.1. Overview

During the execution of a simulation, Probes are used to collect items of data (datum)
for the eventual purpose of post-processing, interpretation and analysis. BONeS
defines general Probes to capture datum from primitive data structures, however in the
this design the TCP is implemented in the ‘C’ language. Hence, the internal details of
the TCP are outside the reach of usual BONeS Probes. For this reason, a specific TCP
Probe is constructed.

The TCP Probe collects data that resides within a TCP, according to the particular
TCP Number it receives through an input port. A parameter to the TCP Probe
identifies the particular datum to gather, and whether or not updates are restricted to
being differential only. There are a number of Data Types that can be examined, most
of which are direct copies from the TCP TCB, however this need not be the case. The
particular Data Types currently defined are a result of the requirements for simulation
design.

The output of the Probe is a REAL type, which BONeS stores and allows to be post-
processed. For example, the value of the TCP Congestion Window could be output
whenever it changes.

2.4.2.2. External Interface

The external interface is simple in nature. The input consists of an INTEGER, which
corresponds to the TCP Number. The output consists of a REAL. In addition, there are
two parameters that define the internal operation of the Probe.

2.4.2.2.1. Parameters

There are two parameters of importance; these are set when the Probe is placed into a
Simulation. These parameters are provided in Table 1-2.26.

Name Purpose Values Default Example
Data Type Indicate what item of data the Probe is

to output.
Defined in
other table.

Null Send
Window

Changes
Only

Indicate whether we want Changes
Only, or the data itself on each update.

Boolean
True/False

True True

Table 1-2.26. Transport Layer TCP Probe: Parameters

2.4.2.2.2. Behaviour

When the TCB Number is received on the Probe’s input, the TCB corresponding to
the TCB Number is interrogated and used to compute the particular datum required
according to the Data Type. If this datum is equivalent to the previous datum, and
Changes Only is True, then no output occurs. Otherwise, for Changes Only of False,
output does occur.

Table 1-2.27 illustrates the Data Type’s that are defined.

 82

Data Type Description
Congestion Window Provides the Congestion Window size.
Slow Start Threshold Provides the Slow Start Threshold.
Retransmission Event Indicates that a Retransmission occurred.
Round Trip Time Average Provides the RTT Average (as computed by TCP).
Round Trip Time Variance Provides the RTT Variance (as computed by TCP).
Send Window Provides the Send Window size.
Unacknowledged Data Provides the amount of unacknowledged data.
Timer Expiry Indicates that a Timer Expiry occurred.
Acknowledgement Received Indicates the particular acknowledgement received.
Reassembly Queue Length Indicates the size of the Reassembly Queue.
Kilobytes Retransmitted Indicates the total Kilobytes retransmitted.
Kilobytes Sent Indicates the total Kilobytes sent.

Table 1-2.27. Transport Layer TCP Probe: Data Types

2.4.2.3. Internal Design

Detailed design information is provided in Appendix 1.

2.4.2.4. Additional notes

�� The TCB Number must be passed as an input, as BONeS will not allow
exported memory parameters for Probes. Non-exported parameters are
allowable, hence the ability to contain the Data Type and Changed Only.

 83

2.4.3. Probe - Network Layer Queue

2.4.3.1. Overview

The Network Layer consists of a Queue implemented in the ‘C’ language. As this
Queue is not accessible by BONeS Probes, a specific Queue Probe is constructed.

The Queue Probe collects data about a Queue according to the particular Queue
Number it receives through an input port. A parameter to the Queue Probe identifies
the particular datum to gather, and whether or not updates are restricted to being
differential only. There are a number of Data Types that can be examined; those
currently defined are a result of requirements in simulation design.

The output of the Probe is a REAL type, which BONeS stores and allows to be post-
processed. For example, the value of the Queue Size could be output whenever it
changes.

2.4.3.2. External Interface

The external interface is simple in nature. The input consists of an INTEGER, which
corresponds to the Queue Number. The output consists of a REAL. In addition, there
are three parameters that define the internal operation of the Probe.

2.4.3.2.1. Parameters

There are three parameters of importance; these are set when the Probe is placed into a
Simulation. These parameters are provided in Table 1-2.28.

Name Purpose Values Default Example
Data Type Indicate what item of data the Probe is

to output.
Defined in
other table.

Null Send
Window

Changes
Only

Indicate whether we want Changes
Only, or the data itself on each update.

Boolean
True/False

True True

Address Used for Data Types that need to
qualify operation to a particular
Address.

Integer 0 10

Table 1-2.28. Network Layer Queue Probe: Parameters

2.4.3.2.2. Behaviour

When the Queue Number is received on the Probe’s input, the Queue corresponding
to the Queue Number is interrogated and used to compute the particular datum
required according to the Data Type. If this datum is equivalent to the previous datum,
and Changes Only is True, then no output occurs. Otherwise, for Changes Only of
False, output does occur.

Table 1-2.29 illustrates the Data Type’s that are defined.

 84

Data Type Description
Queue Size Provides the current Queue size.
Queue Src Address Count Provides the number of items with Src Address <X>

in the Queue.
Queue Dest Address Count Provides the number of items with Dst Address <X>

in the Queue.

Table 1-2.29. Network Layer Queue Probe: Data Types

2.4.3.3. Internal Design

Detailed design information is provided in Appendix 1.

2.4.3.4. Additional notes

�� The Queue Number must be passed as an input, as BONeS will not allow
exported memory parameters for Probes. Non-exported parameters are
allowable, hence the ability to contain the Data Type, Changed Only and
Address.

 85

2.5. Components
The components as specified in the architecture are constructed from the designed
modules. This is a trivial exercise carried out by performing the aggregation as
indicated in the architecture. These aggregations are more concretely specified here.

2.5.1. Simulation

At the top level, a simulation consists of Network Components and a Management
Component. There can only be one Management Component, but any number of
Network Components.

>0 Network
Component

Managment
Component=1

Simulation

has_part

has_part

Figure 1-2.26. Simulation Component

The Management Component is the Management module in itself, which has a
Filename from which commands are read. It is connected to other modules via a
management port.

Management
Component

has_part =1 Management
Output

=1 Filenamehas_part

Management
Portis_a

Figure 1-2.27. Simulation - Management Component

 86

2.5.2. Network Components

All Network Components have a single Address, so that they are reachable from each
other and from Management. They also have a management port for communication
with Management. The Network Component is an End System, Intermediate System
or Communications Link.

Network
Component

Communications
Link

End
System

Intermediate
System

can_be

can_be

can_be

Management
Input=1has_part

Address=1has_attrib

Management
Portis_a

Figure 1-2.28. Simulation - Network Component

The Communications Link is merely a Datalink Layer.

Communications

Link
Datalink

Layeris_a

Figure 1-2.29. Network - Communications Link Component

The End System is a Host or is a Traffic Generator, both of which have a Network
Layer.

End System

Host

Traffic
Generator

can_be

can_be

Network
Layer=1has_part

Figure 1-2.30. Network - End System Component

The Host contains a Generator, Transport-Adaption Layer and Transport Layer as
well.

 87

=1 Generator

Transport-Adapt
Layer=1

Host

has_part

has_part

Transport
Layer=1has_part

Figure 1-2.31. Network - Host Component

The Traffic Generator only contains a Generator and a Network-Adaption Layer, in
addition to the Network Layer it inherits from above.

=1 Generator

Network-Adapt
Layer=1

Traffic
Generator

has_part

has_part

Figure 1-2.32. Network - Traffic Generator Component

The Intermediate System has a single Routing Module, but may have any number of
Network Layers.

=1 Routing
Module

Network
Layer>0

Intermediate
System

has_part

has_part

Figure 1-2.33. Network - Intermediate System Component

Each of these mention modules has specific input and output ports, these must be
matched together when they are aggregated within a component. The following
illustrates these constraints with respect to each module.

The Datalink Layer provides two Datalink Layer Ports.

 88

Datalink
Layer

has_part

has_part

=1

=1

Peer A
Port

Peer B
Port

Datalink Layer
Port

Datalink Layer
Port

is_a

is_a

Figure 1-2.34. Module - Datalink Layer Component

The Network Layer provides a Network Layer Port, and uses a Datalink Layer Port.

Network
Layer

has_part

has_part

=1

=1

Upper Layer
Port

Lower Layer
Port

Network Layer
Port

Datalink Layer
Port

is_a

is_a

Figure 1-2.35. Module - Network Layer Component

The Transport Layer provides a Transport Layer Port, and uses a Network Layer Port.

Transport

Layer

has_part

has_part

=1

=1

Upper Layer
Port

Lower Layer
Port

Transport Layer
Port

Network Layer
Port

is_a

is_a

Figure 1-2.36. Module - Transport Layer Component

The Network-Adaption Layer provides a Data Port, and uses a Network Layer Port.

Network-Adapt

Layer

has_part

has_part

=1

=1

Upper Layer
Port

Lower Layer
Port

Data
Port

Network Layer
Port

is_a

is_a

Figure 1-2.37. Module - Network-Adaption Layer Component

The Transport-Adaption Layer provides a Data Port, and uses a Transport Layer Port.

 89

Transport-Adapt
Layer

has_part

has_part

=1

=1

Upper Layer
Port

Lower Layer
Port

Data
Port

Transport Layer
Port

is_a

is_a

Figure 1-2.38. Module - Transport-Adaption Layer Component

The Generator provides a Data Port.

Generator

has_part =1 Output
Port

Data
Portis_a

Figure 1-2.39. Module - Generator Component

The Routing-Module uses a number of Network Layer Ports.

Routing
Module

has_part >0 Lower Layer
Port

Network Layer
Portis_a

Figure 1-2.40. Module - Routing-Module Component

3. Implementation
The implementation was carried out by translating the designed Data Structures,
Modules and Components from their logical representation into a BONeS
representation of Data Structures and Modules. In this section, discussion is given on
the strategies employed in this process, and the subsequent results from the process.

Due to the level of detail, only the top-level aspects are described in this section: the
detailed lower levels are provided in Appendix 2. There are also notes provided for
intended users of this implementation.

3.1. Strategies
In the implementation of the Modules and Data Structures -- particularly the Modules
-- a consistent approach was taken on various aspects for various reasons. Principally,
the implementation was mapped as directly from the design as possible; DFDs and
PSPECs tended to map directly into individual BONeS modules -- both in structure
and name -- and data stores into BONeS memory and parameters. The choice between
using memory and parameters was based on an evaluation of whether the particular
item was subject to change during execution of a simulation.

 90

The layout of BONeS modules is such that processing is generally directed from left
to right, or up and down depending on the overall nature of the BONeS module. This
retains a consistency that hopefully results in a clearer picture for potential users. In
addition, where possible, sections of a BONeS module that are more closely related
than other sections are more closely grouped, for the purposes of retaining logical
relationships.

Where BONeS primitives have been used, they are often renamed to better suit the
context within which they are operating; generally this is strongly related to the
arguments supplied to the BONeS primitive. For example, the BONeS Delay
primitive used to model the propagation delay of a transmission line is renamed to
Delay for Propagation Delay. This presents a much clearer picture of that primitive’s
role.

The design has also accounted for stub BONeS modules; the purpose of which is to
provide points at which probes can be placed. This strategy is preserved in the
implementation and allows for use of the module to monitor various data structures
for whatever reason without having to alter the module. This is a trivial
accommodation, but worthwhile.

Performance wise, there are two main strategies employed. When Data Structures fan
out from a BONeS module, copies of that module are created. This can lead to
unnecessary overhead when the Data Structures are large. Where possible, attempts
have been made to prevent unnecessary fan out. The other strategy is the
implementation of critical sections in the ‘C’ language. This occurs with the Transport
TCP protocol and the Network Queue. It should have also occurred with the Routing-
Module’s route computation.

Finally, re-use and modularity are attempted with common sets of modules that
perform a clear and distinction function, when that function is used in many places.
An example of this is the construction of a Message Switch, which internally consists
of a several modules and type checking mechanisms.

3.2. Architecture
The mapping from design to implementation retained the same basic architecture,
however there were some minor alterations.

3.2.1. Module Organisation

In the implementation, the Modules are organised in the same manner as the design;
i.e. ordering them in a hierarchy corresponding to the Data Flow Diagrams. BONeS
allows for hierarchical structuring, but strangely enough does not allow the same
Module names to appear regardless of their hierarchical position.

At the very top level, a “Wide-Area TCP” entry exists. In physical terms, the files
reside on the EE RCC Network in the directory

~mgream/BONeS/Wide-Area_TCP.

This directory also contains the stub ‘C’ language files used as primitives. For this
entry, and all descended from it, to be present, the “Wide-Area TCP” library must be
loaded.

 91

Under the top level, each particular Module implemented has its own entry. Other
entries exist, such as a Trash directory and a Simulations directory. The following
table describes each entry.

�� *Trash* -- Contains obsolete modules for backup purposes.

�� Common -- Contains all of the Common Modules.

�� Components -- Contains the Simulation Components.

�� Datalink -- Contains the Datalink Layer Module and constituent modules.

�� Generator -- Contains the Generator Module and constituent modules.

�� Management -- Contains the Management Module and constituent modules.

�� Network-Adaption -- Contains the Network-Adaption Layer Module and
constituent modules.

�� Network -- Contains the Network Layer Module and constituent modules.

�� Probes -- Contains the Transport and Network Layer Probes.

�� Routing-Module -- Contains the Routing-Module Module and constituent
modules.

�� Simulation -- Contains the actual Simulation Module and constituent modules.

�� Transport-Adaption -- Contains the Transport-Adaption Layer Module and
constituent modules.

�� Transport -- Contains the Transport Layer Module and constituent modules.

A snapshot of the environment is shown in Figure 1-3.1, clearly illustrating these
entries and the parent entry under which they are organised.

 92

Figure 1-3.1. Top level Modules in BONeS

Within each entry, a number of conventions have been adopted.

Firstly, according to the design there are two aspects to each Module. There is the
Module itself, and there are a number of Data Accessors used for the manipulation of
Data Structures related to that Module. All Data Accessors are contained within a
“Primitives” entry; there are no further levels within the “Primitives” entry.

Modules themselves are partitioned according to the Data Flow Diagrams and Process
Specifications used in the design. The very top level of the DFD is contained as a
single entry having the same name as a Module, e.g. “Network” under the “Network”
Layer. For each level corresponding to a level in the DFD (including PSPECS) all
bubbles at that level are contained within an entry having the same or similar name.
Importantly, all entries are prefixed with a double underscore and letters
corresponding to the entry for that level. For example, for a “Management” entry, all
entries within it have “__ M” prefix. For a “Process Message” entry, all entries within
it would have a “__ PM” prefix. The entries either correspond to actual BONeS
Modules, or to another deeper level. At each new level, the convention is the same:
the top entry has the same name as the entry from which it has descended, but with the
prefix removed, and all bubbles at that level correspond to entries with prefixing in
place.

It might be asked why this fuss occurred? Initially, the convention was simple: at each
level, use the full name of the bubbles from the Data Flow Diagrams. But then it was

 93

discovered that BONeS does not allow names to clash, irrespective of where they are
in the totality of all modules that it knows about at any given time. This absurdity
would cause clashes for common names such as “Process Network Message”,
“Management” and so forth, even when they were in different branches in the
hierarchy. The solution was to adopt a consistent naming strategy, and using prefixes
seemed an adequate solution. A prefix does not continue down to the next level for
the reason that the length of the prefix would soon overshadow the name of the
module.

The snapshot, shown in Figure 1-3.2, of the Network Layer illustrates these
conventions. The “Primitives” entry exists, along with the “Network” entry
corresponding to a BONeS module. All other entries, corresponding to bubbles in the
DFD, are prefixed with “__ N” and only one entry “__ N Process Outgoing” leads to a
lower level (which is apparent due to the trailing “>“).

Figure 1-3.2. Network Layer Module in BONeS

Within the “Primitives” entry, all constructed Data Accessors for the Network Layer
are present. This level is shown in Figure 1-3.3.

 94

Figure 1-3.2. Network Layer Data Accessors in BONeS

The purpose of this consistent and logically laid out structuring is to preserve
understandability and traceability from the design to the implementation.

3.2.2. Data Structure Organisation

The Data Structures can be placed into three distinct categories.

The first category contains all the Information Elements that are used to transport
items of information throughout the environment. As mentioned in the design, the
Information Elements are constructed as BONeS COMPOSITE types, having a
common “IE Primitive” root. From this, the tree branches first according to the
particular Module that the Information Element corresponds to, and then according to
the type of Information Element.

In BONeS, this inheritance allows for us to easily test the type of Information Element
at any particular level. In this case, the “IE Primitive” does not contain any fields, so
descendants do not gain any fields from it. The only case in this hierarchy where
branches inherit significant information from their parents is with “IE Generator Setup
Primitive” which contains basic Filter parameters. A snapshot of the Data Structure
Hierarchy for Information Elements is shown in Figure 1-3.4.

 95

Figure 1-3.4. Data Structure Hierarchy for Information Elements in BONeS

The second category is that which contains all Messages used in the environment. The
structuring here is much the same as that with Information Elements, in that they are
constructed as BONeS COMPOSITE types, having a common “Msg Primitive” root.
From this, the tree branches first according to the particular Module that the Message
corresponds to, and then according to the type of the Message, and then finally
according to the function qualification for the Message.

The “Msg Primitive” does contain fields to hold Length and Creation Date
information. These fields are inherited by all descendants -- i.e. all Messages. It was
considered that these two fields are basic elements in all Messages, therefore this level
is appropriate to save unnecessary duplication. A snapshot of the Data Structure
Hierarchy for Messages is shown in Figure 1-3.5.

Figure 1-3.5. Data Structure Hierarchy for Messages in BONeS

It may be asked why there are many more Messages than are required, especially the
proliferation of Primitives. The purpose for this structuring is that it allows for type
testing and allows for much tighter constraints on ports that pass Messages. For
example, with the Datalink Layer, the ports are constrained to all Messages of type
“Msg Datalink Primitive” -- which covers that particular Message, and all descended
from it. Not only is there better assurance for the operation of the system, but if any
new Datalink Messages are added, then no changes need to be made to these ports.
This same practice can occur down further in the tree, where an input port may be
constrained to “Msg Data Primitive” only.

The third, and final, category encompasses other Data Structures used for ancillary
and Miscellaneous purposes. This includes the Boolean Data Structure, which is
constructed as a BONeS SET having the two values True and False, along with the
Statistical Parameter which is constructed as a BONeS COMPOSITE having several

 96

descendants for more specialised types of Statistical Parameters (Constant,
Exponential, ...). In this case, the inheritance is used for specification and information
hiding purposes.

 97

3.3. Modules
The categorisation of Modules as being Primary or Miscellaneous is continued from
that used in the design. This section outlines the top-level implementation details; the
detailed implementation aspects are provided in Appendix 2.

For each Module, any necessary details about the implementation are provided, which
includes input and output Ports and types, Data Structures relevant to the Module and
the top level BONeS Module for that Module. The detailed implementation aspects
consist of further levels of modules, ‘C’ language source code and so forth.

3.3.1. Primary Modules

3.3.1.1. Datalink Layer

3.3.1.1.1. Overview

Implementation was straightforward, no major changes occurred. This Module was
the first constructed, so acted as a test bed for subsequent Modules (which were
considered, in the majority, to be more complex and involve more issues than this
Module).

3.3.1.1.2. Ports

The design required interfaces for Layer A, Layer B and Management.

Management is implemented using the “portal” mechanism described as part of the
Management implementation. Layer A and Layer B are implemented as two sets of
input and output ports. The ports are listed in Table 1-3.1.

Name DS Type Direction Design Notes
Msg Request A Msg Datalink

Data Primitive
Input Peer A (input) The restriction is set to

Data Messages only.
Msg Indication A Msg Datalink

Primitive
Output Peer A (output)

Msg Request B Msg Datalink
Data Primitive

Input Peer B (input) The restriction is set to
Data Messages only.

Msg Indication B Msg Datalink
Primitive

Output Peer B (output)

Table 1-3.1. Datalink Layer: BONeS Ports

3.3.1.1.3. Parameters

The design required parameters for Address, Bandwidth, Propagation Delay and
State.

The Address, Bandwidth and Propagation Delay are BONeS Parameters as they are
not expected to be changed during the execution of a simulation. State is BONeS
Memory, because it is expected to change. An additional Management Portal

 98

parameter (BONeS Memory) is added to support Management communication. The
parameters are listed in Table 1-3.2.

Name DS Type Type Design Notes
Management
Portal

Msg
Management
Set Indication

Memory Management
Message

Address INTEGER Parameter Address
Bandwidth REAL Parameter Bandwidth
Propagation Delay REAL Parameter Propagation

Delay

State Boolean Local
Memory

State Default Value is True

Table 1-3.2. Datalink Layer: BONeS Parameters

3.3.1.1.4. Data Structures

The design required a number of Data Structures, implementation detail for these is
provided in Appendix 2. The Data Structures are listed in Table 1-3.3.

Name
IE Datalink Primitive
IE Datalink State
IE Datalink Flow Control
Msg Datalink Primitive
Msg Datalink Connect Primitive
Msg Datalink Disconnect Primitive
Msg Datalink Status Primitive
Msg Datalink Data Primitive
Msg Datalink Connect Indication
Msg Datalink Disconnect Indication
Msg Datalink Data Request
Msg Datalink Data Indication
Msg Datalink Status Indication

Table 1-3.3. Datalink Layer: BONeS Data Structures

3.3.1.1.5. Modules

The top level Datalink Layer Module is shown in Figure 1-3.6. The Ports and
Parameters can be seen, along with the top level Transmission Channels, Management
and Initialisation. More levels of implementation that are provided in Appendix 2,
including the Data Accessors constructed to support the manipulation of Datalink
Layer Data Structures.

 99

 Datalink [19-Dec-1995 17:00:34]

Msg Indication A

Msg Request A

Msg Request B

Msg Indication B

MM

M
M
S

M
S

M

In
itia

lis
e

D
at

al
in

k
M

gm
t

Datalink
Channel

Datalink
Channel

M State

P Address

M Management Portal

P Bandw idth

P Propagation Delay

Figure 1-3.6. Datalink Layer Module

 100

3.3.1.2. Network Layer

3.3.1.2.1. Overview

The Network Layer implementation was one of the more complex. The BONeS
Modules were constructed as mapped from the design with minor name and tactical
alterations. The only architectural alteration of note is that the processing of Datalink
Messages was brought up one level. This was done to reduce what seemed to be an
unnecessary encapsulation; especially due to the fact that each type of message
generated an outwards control signal. This BONeS implementation was
straightforward.

The complexity was involved in the construction of the Queue ADT in the ‘C’
language and its interfaces to BONeS. This involved construction of a low level set of
Queue primitives, over which higher-level abstractions were built. Testing was
performed on the ‘C’ language modules independently of BONeS. The ADT was
constructed in ‘C’ for speed efficiency, and to reduce the level of risk in the project.

A first pass construction did implement the Queue in BONeS; but this was revised
once it was realised that considerable overhead would result.

3.3.1.2.2. Ports

The design required interfaces for Upper Layer and Datalink Layer.

Datalink Layer is implemented as a set of input and output ports corresponding to the
Datalink Layer’s output and input ports respectively. Upper Layer is implemented as a
set of input and output ports. The ports are listed in Table 1-3.4.

Name DS Type Direction Design Notes
Upper Layer Input Msg Network

Data Primitive
Input Upper Layer

(input)

Upper Layer
Output

Msg Network
Primitive

Output Upper Layer
(output)

Lower Layer Input Msg Datalink
Primitive

Input Datalink Layer
(input)

Lower Layer
Output

Msg Datalink
Data Primitive

Output Datalink Layer
(output)

Table 1-3.4. Network Layer: BONeS Ports

3.3.1.2.3. Parameters

The design required parameters for Address, End System, Queue Policy and Queue
Length.

All of these are parameters are implemented as BONeS Parameters as they are not
expected to be changed during the execution of a simulation. The parameters are listed
in Table 1-3.5.

 101

Name DS Type Type Design Notes
Address INTEGER Parameter Address
Queue Discipline String Parameter Queue Policy Format is specified in the

usage notes. Default
value is empty.

Queue Length INTEGER Parameter Queue Length Default value is 50.
End System Boolean Parameter End System Default value is True.

Table 1-3.5. Network Layer: BONeS Parameters

3.3.1.2.4. Data Structures

The design required a number of Data Structures, implementation detail for these is
provided in Appendix 2. The Data Structures are listed in Table 1-3.6.

Name
IE Network Primitive
IE Network Load Factor
Msg Network Primitive
Msg Network Connect Primitive
Msg Network Disconnect Primitive
Msg Network Status Primitive
Msg Network Data Primitive
Msg Network Connect Indication
Msg Network Disconnect Indication
Msg Network Data Request
Msg Network Data Indication
Msg Network Status Indication

Table 1-3.6. Network Layer: BONeS Data Structures

3.3.1.2.5. Modules

The top level Network Layer Module is shown in Figure 1-3.7. The Ports and
Parameters can be seen, along with the top level processing of Datalink Messages and
received Network Data Messages. More levels of implementation are provided in
Appendix 2, including the Data Accessors constructed to support the manipulation of
Network Layer Data Structures.

The top-level implementation corresponds to the design with only one major
difference, the expansion of “DFD 1: Process Datalink Message”; this was done as it
did not seem beneficial to retain the encapsulation.

 102

Low
er Layer Input

Low
er Layer O

utput

R
el

D
n

U
p

R
ej

LdN-M
sg

N
-M

sg

N-MsgDL-Msg

D
C
B
A

Msg

P
rocess

O
utgoing

Dec
N-Da

Process
Data Output

Declare
DL-Stat-In

Declare
DL-Disc-In

Declare
DL-Conn-I

Declare
DL-Data-In

Classify
Datalink
Msg

P
 Q

ueue D
iscipline

P
 Q

ueue Length

P
 A

ddress
P

 E
nd S

ystem

Figure 1-3.7. N

etw
ork L

ayer: M
odule

U
pper Layer O

utput
U

pper Layer Input

N-MsgLoad

N-Msg-OutputN-Msg-Input

ReleaseDL-Msg

N-MsgDL-Msg

Msg

D
C
B
A

N-Msg

Down
DL-Msg

N-Msg

Up
DL-Msg

lare
ta-Req

Process
Load Update

Process
Reject

Process
Status Indication

Process
Data Indication

Classify
Network
Msg

d

d

nd

d

Process
Disconnect
Indication

Process
Connect
Indication

 Netw
ork [20-Dec-1995 19:18:20]

103

3.3.1.3. Transport Layer

3.3.1.3.1. Overview

The Transport Layer implementation was the most complex. The BONeS Modules
were constructed as mapped from the design with minor name and tactical alterations.
This BONeS implementation was straightforward.

The complexity was involved in the construction of the TCP ADT in the ‘C’ language
and its interfaces to BONeS. Testing was performed on the ‘C’ language modules
independently of BONeS. The ADT was constructed in ‘C’ for speed efficiency, and
to reduce the level of risk in the project.

A first pass construction did start to implement TCP in BONeS; but complexity
ensued, and the processing of fragments indicated that a lower level language would
be more practical. Time performance was also considered an issue.

3.3.1.3.2. Ports

The design required interfaces for Upper Layer, Network Layer and Management.

Management is implemented using the “portal” mechanism described as part of the
Management implementation. Network Layer is implemented as a set of input and
output ports corresponding to the Network Layer’s output and input ports respectively.
Upper Layer is implemented as a set of input and output ports. The ports are listed in
Table 1-3.7.

Name DS Type Direction Design Notes
Upper Layer Input Msg Transport

Primitive
Input Upper Layer

(input)

Upper Layer
Output

Msg Transport
Primitive

Output Upper Layer
(output)

Lower Layer Input Msg Network
Primitive

Input Network Layer
(input)

Lower Layer
Output

Msg Network
Data Primitive

Output Network Layer
(output)

Table 1-3.7. Transport Layer: BONeS Ports

3.3.1.3.3. Parameters

The design required parameters for Address, Initial Sequence Number and Destination
Address.

The Address is a BONeS Parameter as it is not expected to be changed during the
execution of a simulation. Initial Sequence Number and Destination Address are
BONeS Memory, because they are expected to change. State is an internal parameter
(BONeS Memory), used to retain knowledge about the current connection state. An
additional Management Portal parameter (BONeS Memory) is added to support
Management communication. The parameters are listed in Table 1-3.8.

 104

Name DS Type Type Design Notes
Management
Portal

Msg
Management
Set Indication

Memory Management
Message

Address INTEGER Parameter Address
Initial Sequence
Number

INTEGER Memory Initial Sequence
Number

Destination
Address

INTEGER Memory Destination
Address

State Boolean Local
Memory

 Default value is False.
Indicates whether TCP is
connected.

Table 1-3.8. Transport Layer: BONeS Parameters

3.3.1.3.4. Data Structures

The design required a number of Data Structures, implementation detail for these is
provided in Appendix 2. The Data Structures are listed in Table 1-3.9.

Name
IE Transport Primitive
IE Transport Parameters
Msg Transport Primitive
Msg Transport Connect Primitive
Msg Transport Disconnect Primitive
Msg Transport Data Primitive
Msg Transport Connect Request
Msg Transport Disconnect Request
Msg Transport Data Request
Msg Transport Data Indication
Msg Transport TCP

Table 1-3.9. Transport Layer: BONeS Data Structures

3.3.1.3.5. Modules

The top level Transport Layer Module is shown in Figure 1-3.8. The Ports and
Parameters can be seen, along with the top-level Connection Manager and TCP
Established Processing, which has wrapper Transport Interface and Network Interface
modules. More levels of implementation are provided in Appendix 2, including the
Data Accessors constructed to support the manipulation of Transport Layer Data
Structures.

 105

 Transport [21-Dec-1995 21:24:57]

Upper Layer Input Upper Layer Output

Lower Layer Input Lower Layer Output

Quench
Stop

Start

Quench

Quench
Stop
Start

D C B A

M
sg

M
sg

D C B A

TCP Established
Processing

Network
Interf ace

Transport
Interf ace

Connection
Manager

D
ec

la
re

T-
Pr

im
D

ec
la

re
N

-P
rim

Declare
N-Data-Ind

Declare
T-Data-Req

T Management

C
la

ss
ify

N
et

w
or

k
M

es
sa

ge

C
la

ss
ify

Tr
an

sp
or

t
M

es
sa

ge

M Initial Sequence Number

M State

M Destionation Address

P Address

M Management Portal

Figure 1-3.8. Transport Layer: Module

 106

3.3.1.4. Network-Adaption Layer

3.3.1.4.1. Overview

The implementation mapping from the design was straightforward, and apart from
minor name and tactical alterations, there are no significant changes.

3.3.1.4.2. Ports

The design required interfaces for Upper Layer, Network Layer and Management.

Management is implemented using the “portal” mechanism described as part of the
Management implementation. Network Layer is implemented as a set of input and
output ports corresponding to the Network Layer’s output and input ports respectively.
Upper Layer is implemented as a set of input and output ports. The ports are listed in
Table 1-3.10.

Name DS Type Direction Design Notes
Data-Length INTEGER Input Upper Layer

(input)

N-Msg Input Msg Network
Primitive

Input Network Layer
(input)

N-Msg Output Msg Network
Data Primitive

Output Network Layer
(output)

Table 1-3.10. Network-Adaption Layer: BONeS Ports

3.3.1.4.3. Parameters

The design required parameters for Address and Address List.

The Address is a BONeS Parameter as it is not expected to be changed during the
execution of a simulation. Address List is BONeS Memory, because it is expected to
change. Network State is an internal parameter (BONeS Memory), used to retain
knowledge about the current state of the Network Layer. An additional Management
Portal parameter (BONeS Memory) is added to support Management communication.
The parameters are listed in Table 1-3.11.

Name DS Type Type Design Notes
Management
Portal

Msg
Management
Set Indication

Memory Management
Message

Address INTEGER Parameter Address
Address List INT-VECTOR Memory Address List
Network State Boolean Local

Memory
 Default value is False.

Indicates whether
Network Layer is
connected.

Table 1-3.11. Network-Adaption Layer: BONeS Parameters

 107

3.3.1.4.4. Data Structures

The design required a number of Data Structures, detail for these is provided in
Appendix 2. The Data Structures are listed in Table 1-3.12.

Name
IE Network-Adaption Primitive
IE Network-Adaption Address List

Table 1-3.12. Network-Adaption Layer: BONeS Data Structures

3.3.1.4.5. Modules

The top level Network-Adaption Layer Module is shown in Figure 1-3.9. The Ports
and Parameters can be seen, along with the top level processing of Network Layer
input and output. More levels of implementation are provided in Appendix 2,
including the Data Accessors constructed to support the manipulation of Network-
Adaption Layer Data Structures.

 Network-Adaption [19-Dec-1995 17:42:51]

Data-Length

N-Msg Output N-Msg Input

Pr
oc

es
s-

N
et

w
or

k-
In

pu
t

Management

Pr
oc

es
s-

N
et

w
or

k-
O

ut
pu

t

M Netw ork State

M Address List

P Address

M Management Portal

Figure 1-3.9. Network-Adaption Layer Module

 108

3.3.1.5. Transport-Adaption Layer

3.3.1.5.1. Overview

The implementation mapping from the design was straightforward, and apart from
minor name and tactical alterations, there are no significant changes.

3.3.1.5.2. Ports

The design required interfaces for Upper Layer, Transport Layer and Management.

Management is implemented using the “portal” mechanism described as part of the
Management implementation. Transport Layer is implemented as a set of input and
output ports corresponding to the Transport Layer’s output and input ports
respectively. Upper Layer is implemented as a set of input and output ports. The ports
are listed in Table 1-3.13.

Name DS Type Direction Design Notes
Data-Length INTEGER Input Upper Layer

(input)

Msg-In Msg Transport
Primitive

Input Transport Layer
(input)

Msg-Out Msg Transport
Primitive

Output Transport Layer
(output)

Table 1-3.13. Transport-Adaption Layer: BONeS Ports

3.3.1.5.3. Parameters

The design required parameters for an Address.

The Address is a BONeS Parameter as it is not expected to be changed during the
execution of a simulation. An additional Management Portal parameter (BONeS
Memory) is added to support Management communication. The parameters are listed
in Table 1-3.14.

Name DS Type Type Design Notes
Management
Portal

Msg
Management
Set Indication

Memory Management
Message

Address INTEGER Parameter Address

Table 1-3.14. Transport-Adaption Layer: BONeS Parameters

3.3.1.5.4. Data Structures

The design required a number of Data Structures, detail for these is provided in
Appendix 2. The Data Structures are listed in Table 1-3.15.

 109

Name
IE Transport-Adaption Primitive
IE Transport-Adaption Connect
IE Transport-Adaption Disconnect

Table 1-3.15. Transport-Adaption Layer: BONeS Data Structures

3.3.1.5.5. Modules

The top level Transport-Adaption Layer Module is shown in Figure 1-3.10. The Ports
and Parameters can be seen, along with the top level processing of Transport Layer
input and output. More levels of implementation are provided in Appendix 2,
including the Data Accessors constructed to support the manipulation of Transport-
Adaption Layer Data Structures.

 Transport-Adaption [19-Dec-1995 17:39:47]

Data-Length

Msg-In Msg-Out

Pr
oc

es
s-

Tr
an

sp
or

t-I
np

ut

Pr
oc

es
s-

Tr
an

sp
or

t-O
ut

pu
t

M
an

ag
em

en
t

P Address

M Management Portal

Figure 1-3.10. Transport-Adaption Layer Module

 110

3.3.1.6. Routing-Module

3.3.1.6.1. Overview

The implementation mapping from the design was straightforward, and apart from
minor name and tactical alterations, there are no significant changes of interest.

There were two significant points in the implementation that did require more detailed
consideration. The first was the construction of the Next Hop computation involving
an iterative technique. This perhaps should have been constructed in a lower level
language, as it would tend to be a bottleneck procedure in the system.

The second issue is the relationship between the Routing-Switch and the “physical”
switch leading to each individual Network Interface. The two were decoupled so that
additional Network Interfaces could be supported without alteration of the Routing-
Switch. The issue is that it must be ensured that the destination output interface
reaches the “physical” switch between the output Message. This is achieved by using
a shared Memory variable.

3.3.1.6.2. Ports

The design required interfaces for Network Layers and Management.

Management is implemented using the “portal” mechanism described as part of the
Management implementation. Network Layer is implemented as a set of input and
output ports corresponding to the Network Layer’s output and input ports respectively.
There are five of these available, and construction is such that addition of more
interfaces is trivial. The ports are listed in Table 1-3.16.

Name DS Type Direction Design Notes
In-A Msg Network

Primitive
Input Network Layer

A (input)

Out-A Msg Network
Data Primitive

Output Network Layer
A (output)

...
In-E Msg Network

Primitive
Input Network Layer

E (input)

Out-E Msg Network
Data Primitive

Output Network Layer
E (output)

Table 1-3.16. Routing-Module: BONeS Ports

3.3.1.6.3. Parameters

The design required parameters for Address and Routing-Table Entries.

The Address is a BONeS Parameter as it is not expected to be changed during the
execution of a simulation. Routing Table is BONeS Memory, because it is expected to
change. Maximum Interfaces is an internal parameter (BONeS Parameter), used to
retain knowledge about the number of interfaces. Interface Load Status, Interface
Availability Status and Output Interface are internal parameters (BONeS Memory),

 111

used to retain knowledge about associated Network Layer status. An additional
Management Portal parameter (BONeS Memory) is added to support Management
communication. The parameters are listed in Table 1-3.17.

Name DS Type Type Design Notes
Management
Portal

Msg
Management
Set Indication

Memory Management
Message

Address INTEGER Parameter Address
Routing Table REAL-

MATRIX
Memory Routing-Table

Entries

Maximum
Interfaces

INTEGER Parameter Default value is 5.

Interface Load
Status

REAL-
VECTOR

Memory Default values are 0.0.

Interface
Availability Status

INT-VECTOR Memory Default values are False.

Table 1-3.17. Routing-Module: BONeS Parameters

3.3.1.6.4. Data Structures

The design required a number of Data Structures, detail for these is provided in
Appendix 2. The Data Structures are listed in Table 1-3.18.

Name
IE Routing-Module Primitive
IE Routing-Module Route-Entry

Table 1-3.18. Routing-Module: Data Structures

3.3.1.6.5. Modules

The top level Routing-Module Module is shown in Figure 1-3.11. The Ports and
Parameters can be seen, along with the top level Routing-Switch and Network
Interface modules. The Routing-Switch utilises the 8-Way Switch to guide an output
data structure along the fabric to the correct Network Layer. More levels of
implementation are provided in Appendix 2, including the Data Accessors constructed
to support the manipulation of Routing-Module Data Structures.

 112

 Routing Module [24-Dec-1995 16:46:54]

In-A Out-A In-B Out-B In-C Out-C In-D Out-D In-E Out-E

Out In

In Out

HGFEDCBA

Out In

In Out

Out In

In Out

Out In

In Out

Out In

In Out

Network-Interf ace

Sw
itc

h
8

W
ay

M
em

Routing-Switch

Network-Interf aceNetwork-Interf aceNetwork-Interf aceNetwork-Interf ace

Management

P Maximum Interf aces

M Interf ace Load Status

M Interf ace Av ailability Status

M Routing Table

M Output Inf erf ace

P Address
M Management Portal

Figure 1-3.11. Routing-Module Module

 113

3.3.1.7. Generator

3.3.1.7.1. Overview

The implementation mapping from the design was straightforward, and apart from
minor name and tactical alterations, there are no significant changes of interest.

This Module does use a ‘C’ implemented library for the creation of data values, but
the interfacing for this was trivial.

3.3.1.7.2. Ports

The design required interfaces for Lower Layer and Management.

Management is implemented using the “portal” mechanism described as part of the
Management implementation. Lower Layer is an output only port. The ports are listed
in Table 1-3.19.

Name DS Type Direction Design Notes
Data-Length INTEGER Output Lower Layer

(output)

Table 1-3.19. Generator: BONeS Ports

3.3.1.7.3. Parameters

The design required parameters for an Address.

The Address is a BONeS Parameter as it is not expected to be changed during the
execution of a simulation. Generator Timer is an internal parameter (BONeS Event),
used to retain knowledge about the timers set up by the Generator. An additional
Management Portal parameter (BONeS Memory) is added to support Management
communication. The parameters are listed in Table 1-3.20.

Name DS Type Type Design Notes
Management
Portal

Msg
Management
Set Indication

Memory Management
Message

Address INTEGER Parameter Address

Table 1-3.20. Generator: BONeS Parameters

3.3.1.7.4. Data Structures

The design required a number of Data Structures, detail for these is provided in
Appendix 2. The Data Structures are listed in Table 1-3.21.

 114

Name
IE Generator Primitive
IE Generator Setup Primitive
IE Generator Stop
IE Generator Setup TCP
IE Generator Setup Telnet
IE Generator Setup Statistical

Table 1-3.21. Generator: BONeS Data Structures

3.3.1.7.5. Modules

The top level Generator Module is shown in Figure 1-3.12. The Ports and Parameters
can be seen, along with the top level processing of Setup and Stop actions. More
levels of implementation are provided in Appendix 2, including the Data Accessors
constructed to support the manipulation of Generator Data Structures.

 Generator [19-Dec-1995 17:33:05]

Data Length

IE

Data Length

C
an

ce
l

Declare
IE Generator
Stop

Declare IE
Generator
Setup-Primitive

Process-Setup

Pr
oc

es
s-

C
an

ce
l

Management
IE Portal

E Generator Timer

P Address

M Management Portal

Figure 1-3.12. Generator Module

 115

3.3.1.8. Management

3.3.1.8.1. Overview

The implementation mapping from the design was straightforward, and apart from
minor name and tactical alterations, there are no significant changes of interest. This
Module is the heart of the simulation, in that it interprets commands placed into a
management file and converts these into Information Elements that are sent to
specifically addressed Modules.

3.3.1.8.2. Ports

The design required interfaces for Modules and Initialisation.

Modules is implemented using a “portal” mechanism which involves a common
shared memory location used by all Modules requiring Management control. A
Message is placed into the shared memory and read by the Module with an Address
equivalent to the destination address in the Message. Initialisation is a trigger
mechanism used to indicate that the simulation has started.

3.3.1.8.3. Parameters

The design required parameters for a Filename.

The Filename is a BONeS Parameter as it is not expected to be changed during the
execution of a simulation. Address and File are internal parameters (BONeS
Memory), used to retain knowledge about the destination address for a Management
Message and the active file handle from which commands are being read. An
additional Management Portal parameter (BONeS Memory) is added to support
Management communication (in this case, it is distinctly write). The parameters are
listed in Table 1-3.22.

Name DS Type Type Design Notes
Management
Portal

Msg
Management
Set Indication

Memory Management
Message

Filename String Parameter Filename
File FILE Memory
Address INTEGER Memory

Table 1-3.22. Management: BONeS Parameters

3.3.1.8.4. Data Structures

The design required a number of Data Structures, detail for these is provided in
Appendix 2. The Data Structures are listed in Table 1-3.23.

 116

Name
Msg Management Primtive
Msg Management Set Primitive
Msg Management Set Indication

Table 1-3.23. Management: BONeS Data Structures

3.3.1.8.5. Modules

The top level Management Module is shown in Figure 1-3.13. The Ports and
Parameters can be seen, along with the top level processing. This top level processing
involves an event loop that reads a command, waits and then executes it. More levels
of implementation are provided in Appendix 2, including the Data Accessors
constructed to support the manipulation of Management Data Structures.

 Management [19-Dec-1995 17:24:42]

M

F

IE

Next
Current

F
Process
Addressing
Inf ormation

Terminate
Simulation

Process
Module
Command

Initialise

Send
Command
IE

Read
And Wait

M Address

M File

M Management Portal

P Filename

Figure 1-3.13. Management Module

 117

3.3.2. Miscellaneous Modules

3.3.2.1. Statistical Parameter

3.3.2.1.1. Overview

The Statistical Parameter was implemented by translating each function into a
Module. For the purposes of creating Statistical Parameters, the defined Data
Structures can be created individually. For computing a value according to a
Statistical Parameter, there is a single module that hides the implementation.

3.3.2.1.2. Data Structures

There are Data Structures defined to encapsulate each type of Statistical Parameter,
derived from a base Statistical Parameter. Detail for these is provided in Appendix 2.
The Data Structures are listed in Table 1-3.24.

Name
Statistical Parameter
Statistical Parameter Constant
Statistical Parameter Uniform
Statistical Parameter Normal
Statistical Parameter Poisson
Statistical Parameter Exponential

Table 1-3.24. Statistical Parameter: BONeS Data Structures

3.3.2.1.3. Modules

To create particular Statistical Parameters, as required in the design, BONeS Data
Structure creation block are used with the Statistical Parameter of interest. There are
no explicit Modules constructed for this functionality.

To compute a value for a particular Statistical Parameter, a single Module is defined.
The top level Module is shown in FIGURE. Internally, individual Modules execute
functionality related to particular Statistical Parameters; this level of detail is provided
in Appendix 2.

 118

3.3.2.2. Transport Layer TCP Probe

3.3.2.2.1. Overview

The Probe was implemented through a top level Module and a ‘C’ implementation,
the specific details of which are provided in Appendix 2.

3.3.2.2.2. Ports

The design required interfaces for the TCB Number and the output variable. The ports
are listed in Table 1-3.25.

Name DS Type Direction Notes
TCB Number INTEGER Input Provides the TCB Number for locating

the datum.
Value REAL Output Provides the actual datum collected.

Table 1-3.25. Transport Layer TCP Probe: Ports

3.3.2.2.3. Parameters

The design required two parameters, for Changed Only and Data Type, both of which
are implemented as BONeS Parameters. The parameters are listed in Table 1-3.26,
and Table 1-3.27.

Name DS Type Type Notes
Changed Only Boolean Parameter Indicates whether only changed values

should be output
Type STRING Parameter Indicates the particular datum that is to

be collected.

Table 1-3.26. Transport Layer TCP Probe: BONeS Parameters

 119

Name Notes
Congestion Window
Slow Start Threshold
Retransmission Events
Round Trip Time Average The smoothed RTT computed by TCP.
Round Trip Time Variance As computed by TCP.
Send Window
Unacknowledged Data Computed from window state values.
Timer Expiries
Acknowledgements Received The acknowledgement value.
KB Retransmitted
KB Transmitted
Reassembly Queue Size Number of packets, not byte count.

Table 1-3.27. Transport Layer TCP Probe: Types

3.3.2.2.4. Modules

There is a single Module, which is displayed (along with corresponding ‘C’ source) in
Appendix 2.

 120

3.3.2.3. Network Layer Queue Probe

3.3.2.3.1. Overview

The Probe was implemented through a top level Module and a ‘C’ implementation,
the specific details of which are provided in Appendix 2.

3.3.2.3.2. Ports

The design required interfaces for the Queue Number and the output variable. The
ports are listed in Table 1-3.28.

Name DS Type Direction Notes
Queue Number INTEGER Input The Queue to be looked at.
Value REAL Output The data variable computed.

Table 1-3.28. Network Layer Queue Probe: Ports

3.3.2.3.3. Parameters

The design required two parameters, for Changed Only and Data Type, both of which
are implemented as BONeS Parameters. The parameters are listed in Table 1-3.29 and
Table 1-3.30.

Name DS Type Type Notes
Changed Only Boolean Parameter Whether or not to provide changed

values only.
Type STRING Parameter The type of datum to be computed.
Address INTEGER Parameter Used to indicate addresses in the Queue

to be looked at.

Table 1-3.29. Network Layer Queue Probe: BONeS Parameters

Name Notes
Size
Src Address Count
Dst Address Count

Table 1-3.30. Network Layer Queue Probe: Types

3.3.2.3.4. Modules

There is a single Module, which is displayed (along with corresponding ‘C’ source) in
Appendix 2.

 121

3.3.2.4. Common

3.3.2.4.1. Overview

There are a number of common modules that have been implemented, the detail for
which is given in Appendix 2. A summary is provided in Table 1-3.31.

Module Description
Boolean == Compare Boolean Data Structures.
Create Msg Application Data Create a Msg Application Data of given Length.
Extract Msg Application Data Extract the Length and Creation Time of a Msg Application

Data.
IE Switch Switch an IE onto multiple output ports depending upon the

type of IE.
Msg Switch Switch a Msg onto multiple output ports depending upon the

type of Msg, with 4 output ports.
Switch 8-Way Mem Same as Msg Switch, but this time has 8 output ports.
Type == Switch Compare a Data Structure’s type to another type.

Table 1-3.31. Common Modules

The Data Structures are listed in Table 1-3.32, more detail is given in Appendix 2.

Name
Msg Primitive
Msg Application Primitive
Msg Application Data
Boolean

Table 1-3.32. Common Data Structures

 122

3.4. Components
As designed, the Components are constructed by aggregating the Primary Modules.
Each Module uses has a number of arguments, these are either set to a constant value,
or exported so that they can be set when using the Component. Here, both the
construction of the Components and the arguments used for consistent Modules are
shown.

3.4.1. Host

The Host aggregates a Generator, Transport-Adaption Layer, Transport Layer and
Network Layer to achieve its goal of being a TCP capable Network End System. The
construction is shown in Figure 1-3.14. All argument values are shown in Table 1-
3.33.

 Host [24-Dec-1995 16:39:24]

DL-Msg

Gene

Transport

Transp

Netw or

P Address
M Managem
P Queue Di
P Queue Le

DL-Out

rator

-Adaption

ort

k

ent Portal
scipline
ngth

Figure 1-3.14. Host Component

 123

Module Name DS Type Value
Generator,
Transport-Adaption Layer,
Transport Layer,
Network Layer

Management Portal Msg Management
Set Indication

Exported.
No default.

Generator,
Transport-Adaption Layer,
Transport Layer,
Network Layer

Address INTEGER Exported.
No default.

Network Layer Queue Discipline String Exported.
Default is empty.

Network Layer Queue Length INTEGER Exported.
Default is 20.

Network Layer End System Boolean True

Table 1-3.33. Host: Parameters

 124

3.4.2. Traffic

The Traffic aggregates a Generator, Network-Adaption Layer and Network Layer to
achieve its goal of being a Network End System capable of transmitting and receiving
traffic of defined characteristic. The construction is shown in Figure 1-3.15. All
argument values are shown in Table 1-3.34.

 Traffic [24-Dec-1995 16:40:48]

DL-Msg DL-Out

Netw ork

Generator

Netw ork-Adaption

P Address
M Management Portal
P Queue Discipline
P Queue Length

Figure 1-3.15. Traffic Component

 125

Module Name DS Type Value
Generator,
Network-Adaption Layer,
Network Layer

Management Portal Msg Management
Set Indication

Exported.
No default.

Generator,
Network-Adaption Layer,
Network Layer

Address INTEGER Exported.
No default.

Network Layer Queue Discipline String Exported.
Default is empty.

Network Layer Queue Length INTEGER Exported.
Default is 20.

Network Layer End System Boolean True

Table 1-3.34. Traffic: Parameters

 126

3.4.3. Link

The Link consists only of a Datalink Layer. The construction is shown in Figure 1-
3.16. All argument values are shown in Table 1-3.35.

 Link [24-Dec-1995 16:40:21]

To A

From A
From B

To B

A Req
A Ind

B Ind
B ReqDatalink

P Address

M Management Portal

P Bandw idth

P Propagation Delay

Figure 1-3.16. Link Component

Module Name DS Type Value
Datalink Layer Management Portal Msg Management

Set Indication
Exported.
No default.

Datalink Layer Address INTEGER Exported.
No default.

Datalink Layer Bandwidth INTEGER Exported.
Default is 64000.

Datalink Layer Propagation Delay REAL Exported.
Default is 0.007

Table 1-3.35. Link: Parameters

 127

3.4.4. Router

The Router is constructed by aggregating a single Routing-Module with a number of
Network Layers. In this case, note that the Network Layers are all given the same
Address. The construction is shown in Figure 1-3.17. All argument values are shown
in Table 1-3.36.

 Router [24-Dec-1995 16:40:30]

In-A DL-A In-B DL-B In-C DL-C In-D DL-D In-E DL-E

A A B B C C D D E E

Routing
Module

Netw orkNetw orkNetw orkNetw orkNetw ork

P Address
M Management Portal
P Queue Length
P Queue Discipline

Figure 1-3.17. Router Component

Module Name DS Type Value
Routing-Module,
Network Layer(s)

Management Portal Msg Management
Set Indication

Exported.
No default.

Routing-Module,
Network Layer(s)

Address INTEGER Exported.
No default.

Network Layer(s) Queue Discipline String Exported.
Default is empty.

Network Layer(s) Queue Length INTEGER Exported.
Default is 20.

Network Layer(s) End System Boolean False

Table 1-3.36. Router: Parameters

 128

3.4.5. LAN

The LAN builds upon the basic Components to provide a model of a simple Local
Area Network. In this model, there are three Hosts, each of which is connected to a
Router. The Router is connected to output ports of the LAN. Therefore, the LAN can
be connected to another LAN, or Router or whatever, via. a Link. The chosen
arguments are representative of a CSMA/CD (Ethernet) LAN.

The construction is shown in Figure 1-3.18. All argument values are shown in Table
1-3.37.

 LAN [24-Dec-1995 16:39:41]

Local Area Netw ork

WAN-Out

WAN-In

A A B B C C D D E E

Router

LinkLinkLink

HostHostHost

P Address
M Management Portal

P Link: Bandw idth

P Link: Propagation Delay

P Host: Queue Discipline

P Host: Queue Length

P Router: Queue Discipline

P Router: Queue Length

Figure 1-3.18. LAN Component

 129

Module Name DS Type Value
Hosts,
Links,
Router

Management Portal Msg Management
Set Indication

Exported.
No default.

Router Address INTEGER Exported.
No default.

Hosts (1 ... 3) Address INTEGER Router Address +
(Host Number)

Links (1 ... 3) Address INTEGER Router Address +
(Link Number) + 5

Links Bandwidth INTEGER Exported.
Default is 1000000.

Links Propagation Delay REAL Exported.
Default is 0.001

Hosts Queue Discipline String Exported.
Default is empty.

Hosts Queue Length INTEGER Exported.
Default is 10.

Router Queue Discipline String Exported.
Default is empty.

Router Queue Length INTEGER Exported.
Default is 20.

Table 1-3.37. LAN: Parameters

 130

3.4.6. LAN -- Traffic

The LAN -- Traffic is similar to the LAN, however it has a Traffic End System in
place of a Host End System.

The construction is shown in Figure 1-3.19. All argument values are shown in Table
1-3.38.

 LAN - Traffic [24-Dec-1995 16:40:04]

Local Area Netw ork

WAN-Out

WAN-In

A A B B C C D D E E

Router

Traff ic
3

Link
8

Link
7

Link
6

Host
2

Host
1

P Address
M Management Portal

P Link: Bandw idth

P Link: Propagation Delay

P Host: Queue Discipline

P Host: Queue Length

P Router: Queue Discipline

P Router: Queue Length

P Traff ic: Queue Discipline

P Traff ic: Queue Length

Figure 1-3.19. LAN -- Traffic Component

 131

Module Name DS Type Value
Hosts,
Links,
Router

Management Portal Msg Management
Set Indication

Exported.
No default.

Router Address INTEGER Exported.
No default.

Hosts (1 ... 2) Address INTEGER Router Address +
(Host Number)

Traffic Address INTEGER Router Address +
3

Links (1 ... 3) Address INTEGER Router Address +
(Link Number) + 5

Links Bandwidth INTEGER Exported.
Default is 1000000.

Links Propagation Delay REAL Exported.
Default is 0.001

Hosts Queue Discipline String Exported.
Default is empty.

Hosts Queue Length INTEGER Exported.
Default is 10.

Traffic Queue Discipline String Exported.
Default is empty.

Traffic Queue Length INTEGER Exported.
Default is 10.

Router Queue Discipline String Exported.
Default is empty.

Router Queue Length INTEGER Exported.
Default is 20.

Table 1-3.38. LAN -- Traffic: Parameters

 132

3.4.7. Simulation Management

The Simulation Management consists only of a Management Module. The
construction is shown in Figure 1-3.20. All argument values are shown in Table 1-
3.39.

 Simulation Management [24-Dec-1995 16:40:39]

Management

M Management Portal
P Filename

Figure 1-3.20. Simulation Management Component

Module Name DS Type Value
Management Management Portal Msg Management

Set Indication
Exported.
No default.

Management Filename String Exported.
No default.

Table 1-3.39. Simulation -- Management: Parameters

 133

3.5. Usage Notes
When constructing a Simulation using the Components given here, there are a number
of issues that must be addressed. All Components can be linked with one another,
provided that corresponding ports match. The Data Structure limitations on
Component ports provide a pre-condition mechanism for assuring that Components
are correctly connected. For example, it is not possible to connect the Datalink Layer
to the Transport Layer. This clearly justifies are design decisions in relation to the use
of such primitives.

Components have arguments that must be specified, these arguments are generally
related to the particular Component itself, but there are a few arguments that are
present on all Components. The first of these is an “Address”. The Address uniquely
identifies a participating Component in the Simulation, and is used for addressing
Messages and for addressing Management. A unique Address must be supplied for
each Component.

Rather than complicate the issue and require connections between Management and
every Component, a portal mechanism is used; this involves Management Messages
being transferred from the Simulation Management Component to other Components
using a shared Memory Location. A “Management Portal” argument is present on all
Components, and there should be one Management Portal in existence at the top of
the Simulation that is shared by all Components. The Simulation Management
Component writes to this portal, whereas all other Components read from it.

Although Probes can be placed anywhere, there are two special cases that relate to the
Transport Layer and Network Layer. The TCP and Queue modules in these,
respectively, are constructed in ‘C’, and therefore inaccessible to existing BONeS
probes. Therefore, special “Transport -- TCP” and “Network -- Queue” probes have
been created that have an argument specifying the type of data to retrieved. These
arguments are covered in the respective implementation details.

Finally, the Management File is at the heart of the Simulation. It is read and translated
into Information Elements that are passed to appropriate Modules within Addressed
Components. Note that for the case of LANs, which involve aggregations of
Components, the Address must correspond to a constituent Component (i.e. Host,
Traffic, Router or Link). The File is constructed with ASCII numbers; a program to
convert between friendlier strings and numbers was to be constructed, but it did not
eventuate. The following paragraphs and tables detail the format of this File:

3.5.1. Management File Format

The File is a standard text file; it consists of a number of lines. Each line corresponds
to a particular command that is composed of a number of fields. Each field is
separated by a number of spaces.

The first field provides the Time at which the command must execute. This is a
number of seconds relative to the start of the Simulation. It is encoded as a REAL
number, allowing for fractional seconds.

 134

The second field provides the Destination Address for the command. This corresponds
to the Address argument for a particular Component in the Simulation. It is encoded
as an INTEGER number.

The third field provides the Destination Module for the command. This corresponds to
a particular type of Module within the given Component that the command is
addressed to. Table 1-3.40 illustrates the values that this field can take. It is encoded
as an INTEGER number.

Destination Module Value
Datalink Layer 00
Network Layer 01
Transport Layer 02
Network-Adaption Layer 03
Transport-Adaption Layer 04
Generator 05
Routing-Module 06

Table 1-3.40. Management File: Destination Modules

The fourth field provides the type of Command. The Command Types are particular to
each given Destination Module. Table 1-3.41 illustrates the values that this field can
take. It is encoded as an INTEGER number.

Destination Module Command Type Value
Datalink Layer Set State 00
Network Layer - -
Transport Layer Set Parameters 00
Network-Adaption Layer Set Address List 00
Transport-Adaption Layer Connect Session 00
Transport-Adaption Layer Disconnect Session 01
Generator Setup FTP Generator 00
Generator Setup Telnet Generator 01
Generator Setup Statistical Generator 02
Routing-Module Set Route Entry 00

Table 1-3.41. Management File: Command Types

For each Command Type, there are arguments particular to that Command Type. The
following tables provide the content details for each Command Type.

3.5.1.1. Datalink Layer -- Set State

The operational state of the Datalink Layer can be set to active or inactive. When the state is
set to inactive, the Datalink will not transport Messages between its two connected peers, it
will whist active. In both cases, it indicates to its peer Network Layer the state that it has
entered. The state is supplied as an argument.

 135

Number Content
1 An INTEGER number providing indicating what state the

Datalink Layer should be in, having the following values:
00: Inactive
01: Active

3.5.1.2. Transport Layer -- Set Parameters

When the Transport Layer establishes a connection with a peer, it does not carry out
any TCP handshaking (this is a model, not an actual implementation of TCP),
therefore some means to specify the Initial Sequence Number (ISN) is required, so
that both peers can communicate correctly. This is not set at a fixed value, but it will
default to one, as crossover connections are still potentially possible in our
environment. The Initial Sequence Number (ISN) is supplied as an argument.

Number Content
1 An INTEGER number, of any value, corresponding to the

Initial Sequence Number (ISN) that should be used.

3.5.1.3. Network-Adaption Layer -- Set Address List

The Network-Adaption Layer encapsulates units of data and transports them using
Network Layer Messages, in doing so, it must provide addressing information for
these Messages. A List of Addresses can be supplied, and the Network-Adaption
Layer will select one at random for each Message that it creates, naturally, if only one
Address is supplied in the List, then it will be used at all times. The encoding consists
of specifying the number of entries in the Address List, and then each Address in
succession.

Number Content
1 An INTEGER number, of a value between 1 and 32

inclusive, corresponding to the number of Addresses that are
provided in the list.

2 An INTEGER number, corresponding to the first Address in
the Address List.

3 An INTEGER number, corresponding to the second Address
in the Address List.

...
n An INTEGER number, corresponding to the nth Address in

the Address List.

3.5.1.4. Transport-Adaption Layer -- Connect Session

The Transport-Adaption Layer uses the Transport Layer, and in particular may request
the Connection of a Transport Session. When doing so, it must indicate a peer
Address for the session. The Address is supplied as an Argument.

 136

Number Content
1 An INTEGER number, corresponding to the Destination

Address for the Transport Session.

3.5.1.5. Transport-Adaption Layer -- Disconnect Session

The Transport-Adaption Layer uses the Transport Layer, and in particular may request
the Disconnection of a Transport Session. It does not need to convey any additional
information, so there are no arguments in this case.

Number Content

3.5.1.6. Generator -- Setup FTP Generator

The Generator can provide data corresponding to an FTP profile. In addition, it
operates according to a set of filter parameters that allow for limitations to be set on
the length of time that data is generated for, the number of bytes that is generated in
total, and the number of units of data that is generated. These three common filter
parameters are supplied as arguments.

Number Content
1 A REAL number, indicating the maximum length of time

that the Generator should continue providing data for. The
value is in seconds, and may be fractional. This does not
apply for FTP data, as there is only one item created.

2 An INTEGER number, indicating the maximum number of
bytes that the Generator should provide.

3 An INTEGER number, indicating the maximum number of
units of data that the Generator should provide. This does
not apply for FTP data, as there is only one item created.

3.5.1.7. Generator -- Setup Telnet Generator

The Generator can provide data corresponding to an Telnet profile. In addition, it
operates according to a set of filter parameters that allow for limitations to be set on
the length of time that data is generated for, the number of bytes that is generated in
total, and the number of units of data that is generated. These three common filter
parameters are supplied as arguments.

Number Content
1 A REAL number, indicating the maximum length of time

that the Generator should continue providing data for. The
value is in seconds, and may be fractional.

2 An INTEGER number, indicating the maximum number of
bytes that the Generator should provide.

3 An INTEGER number, indicating the maximum number of
units of data that the Generator should provide.

 137

3.5.1.8. Generator -- Setup Statistical Generator

The Generator can provide data corresponding to a statistical distribution. In addition,
it operates according to a set of filter parameters that allow for limitations to be set on
the length of time that data is generated for, the number of bytes that is generated in
total, and the number of units of data that is generated. These three common filter
parameters are supplied as arguments. There are a number of potential statistical
distributions, each of which has defined arguments. Two sets of distributions are
supplied, data is generated at intervals corresponding to the Time characteristic, and
the amount of data generated corresponds to the Space characteristic.

Number Content
1 A REAL number, indicating the maximum length of time

that the Generator should continue providing data for. The
value is in seconds, and may be fractional.

2 An INTEGER number, indicating the maximum number of
bytes that the Generator should provide.

3 An INTEGER number, indicating the maximum number of
units of data that the Generator should provide.

4 ... a An ENCODING of parameters for a particular Statistical
Distribution, corresponding to the Time characteristic
needing to be generated.

a+1 ... b An ENCODING of parameters for a particular Statistical
Distribution, corresponding to the Space characteristic
needing to be generated.

3.5.1.8.1. Statistical Parameter Encoding -- Constant

The Statistical Parameter encoding includes an identifier for the type of distribution,
and a single Constant value to characterise a Constant Statistical Distribution.

Number Content
1 An INTEGER number, indicating the particular type of

Statistical Parameter, which has the value:
00: Constant Distribution

2 A REAL number, indicating the constant value.

3.5.1.8.2. Statistical Parameter Encoding -- Uniform

The Statistical Parameter encoding includes an identifier for the type of distribution,
and Lower and Upper bounds to characterise a Uniform Statistical Distribution.

Number Content
1 An INTEGER number, indicating the particular type of

Statistical Parameter, which has the value:
01: Uniform Distribution

2 A REAL number, corresponding to the Minimum value in
the Uniform Distribution.

3 A REAL number, corresponding to the Maximum value in
the Uniform Distribution.

 138

3.5.1.8.3. Statistical Parameter Encoding -- Normal

The Statistical Parameter encoding includes an identifier for the type of distribution,
and Mean and Variance values to characterise a Normal Statistical Distribution.

Number Content
1 An INTEGER number, indicating the particular type of

Statistical Parameter, which has the value:
02: Normal Distribution

2 A REAL number, corresponding to the Mean value in the
Normal Distribution.

3 A REAL number, corresponding to the Variance value in the
Normal Distribution.

3.5.1.8.4. Statistical Parameter Encoding -- Exponential

The Statistical Parameter encoding includes an identifier for the type of distribution,
and a Mean value to characterise an Exponential Statistical Distribution.

Number Content
1 An INTEGER number, indicating the particular type of

Statistical Parameter, which has the value:
03: Exponential Distribution

2 A REAL number, corresponding to the Mean value in the
Exponential Distribution.

3.5.1.8.5. Statistical Parameter Encoding -- Poisson

The Statistical Parameter encoding includes an identifier for the type of distribution,
and a Lambda value to characterise a Poisson Statistical Distribution.

Number Content
1 An INTEGER number, indicating the particular type of

Statistical Parameter, which has the value:
04: Poisson Distribution

2 A REAL number, corresponding to the Lambda value in the
Poisson Distribution.

3.5.1.9. Routing-Module -- Set Route Entry

The Routing-Module maintains a table of Route entries that are used to switch packets
between connected Links using Interfaces with those Links. An entry can be placed
into this table, containing an Address and the Interface used to reach that Address, at a
given Cost. An argument is used to provide each value.

 139

Number Content
1 An INTEGER number, indicating the Address for which this

Routing Entry is for.
2 An INTEGER number, indicating the Interface on the

particular Routing-Module for which the Route corresponds
to. This has a value between 1 and 5 inclusive.

3 A REAL number, indicating the Cost associated with the
Route. A value of 0.0 indicates that there is no Route.

3.5.2. Management File Example

The following illustrates a simple example of the Management File. Consider the
requirements of needing to set up a Router between two Hosts, and then establish a
TCP conversation between these two Hosts. Let the first Host be denoted by A (1),
and the second Host by B (2), and the Router by C (3). The Route costs are irrelevant
in this context.

The conversation will consist of Telnet traffic, only in one direction; from A to B. The
TCP conversation starts at Time 1 (let the system initialise) and proceeds for 10
seconds, after which the simulation terminates at Time 12. Table 1-3.42 outlines the
exact commands and file contents.

Time Addr Command Description File Contents
0 C Set Route Entry (A,1,1) Interface 1 reaches A at

Cost 1
00 03 06 00 01 01 01

0 C Set Route Entry (B,2,1) Interface 2 reaches B at
Cost 1

00 03 06 00 02 02 01

0 A Set Parameter (1234) TCP use an ISN of 1234 00 01 02 00 1234
0 B Set Parameter (1234) TCP use an ISN of 1234 00 02 02 00 1234
0 A Connect Session (B) TCP Connect to B 00 01 04 00 02
0 B Connect Session (A) TCP Connect to A 00 02 04 00 01
1 A Setup Telnet Generator

(10,0,0)
Telnet data for 10
seconds, no byte or unit
restrictions

01 01 05 01 10 00 00

12 - - End of Simulation 12

Table 1-3.42. Management File: Example

 140

4. Testing

4.1. Overview
The BONeS Modules constructed through the implementation need to be verified to
ensure that they function according to their design. Modules that do not function
correctly will result in the collection of invalid data during the execution of
simulations, and therefore invalid analysis and conclusions.

To achieve this, two steps where considered. The first step consists of per Module
testing, in which each Module is individually tested by itself. The general strategy is
to construct a simulation in which the Module is stimulated by inputs, and outputs are
logged to a file. The contents of the file are then examined to determine whether
correct behaviour has occurred.

The second step consists of an execution of more complex simulations, for the express
purpose of gaining results that can be correlated with previous work and theoretical
expectations. The first two simulations designed for examination, in Part 2, have
verification and validation as their express objectives.

Due to the BONeS software not being available for use, this testing could not be
carried out. However, the ‘C’ modules, with the exception of the TCP implementation
where tested through their development, which is why the implementation of these
modules is quite modular in nature (crisp boundaries and interfaces are more
amenable to testing).

The following summary illustrates the basic strategy employed to test each Module;
the tests do not cover every single aspect of behaviour, as such tests would be too
involved and any other anomalies can be picked up during the simulations.

4.2. Summary

4.2.1. Datalink Layer

For the correct behaviour of the Datalink Layer, the following points need to be
verified:

�� The correct delay is introduced, according to the Bandwidth and Propagation
characteristics set for the Datalink Layer.

�� When the Datalink Layer is in the inactive state, it does not pass Messages are.

�� When Messages are sent, while the Datalink Layer is in the active state, Messages
are passed through.

The following steps are followed to carry out testing for these points:

1. A BONeS simulation is constructed with the following content:

�� A single Datalink Layer Module.

�� A loop started by an “Init” Module that generates a Datalink Data Request
Message every 1 second. The lengths of the Messages are set to random

 141

values (a uniform distribution will suffice). These are sent to the Datalink
Layer input port.

�� A “One Pulse” Module, set to trigger at 10 seconds, which causes a
Management Messages to be generated and written into the Management
Portal. The Message indicates that the state of the Datalink Layer is
inactive..

�� A “One Pulse” Module, set to trigger at 20 seconds, which causes a
Management Messages to be generated and written into the Management
Portal. The Message indicates that the state of the Datalink Layer is active.

�� “Textual Description Probes” are placed on all input and output ports of the
Datalink Layer.

�� The remaining Datalink Layer parameters are set to conservative values.

2. The simulation is run for 30 seconds, during which time all inputs and outputs are
written to the log file.

3. The contents of the log file are examined to ensure that

�� The delay incurred by each Message is correct according to the configured
Bandwidth, Propagation Delay and the particular Message’s length.

�� No Messages are output from the Datalink Layer whilst it is in the inactive
state.

4.2.2. Network Layer

For the correct behaviour of the Network Layer, the following points need to be
verified:

�� Messages are enqueued.

�� Messages are rejected upon insertion into a full queue.

�� Messages are released when instructed.

�� The various queue behavioural disciplines function correctly.

The following steps are followed to carry out testing for these points:

1. A BONeS simulation is constructed with the following content:

�� A single Network Layer Module.

�� An “Init” Module set to trigger an infinite loop. The loop iterates with
period 1 second, and generates a Network Layer Data Request Message of
arbitrary length, with sequentially increasing destination address. These are
sent to the Network Layer input port.

�� An “Init” Module, which generates a Datalink Connect Indication Message
to inform the Network Layer that the Datalink Layer is active. This is sent
to the Datalink Layer input port.

�� The queue length is set to 5 packets.

 142

�� A “One Pulse” Module, set to execute at 10 seconds, that triggers a loop.
The loop iterates with period 0.5 seconds, and generates Datalink Layer
Status Indication of Flow Control Released Messages. These are sent to the
Datalink Layer input port.

�� “Textual Description Probes” are placed on all input and output ports of
the Network Layer.

�� The remaining Network Layer parameters are set to conservative values.

2. The simulation is run for 30 seconds, during which time all inputs and outputs are
written to the log file.

3. The contents of the log file are examined to ensure that

�� The Network Status Indication Messages with Load Factor Information
Elements indicate that the queue size is growing.

�� The queue overflows when it becomes full, and therefore results in the
removal of a Message.

�� The selection of a Message to destroy (when overflow occurs), and the
Messages output are consistent with the particular queue discipline in place.

4.2.3. Transport Layer

The testing for the Transport Layer is left until the simulations. All other Modules can
be verified prior to simulation, so the simulation serves to carry out this verification
(and validation).

4.2.4. Network-Adaption Layer

For the correct behaviour of the Network-Adaption Layer, the following points need
to be verified:

�� The Address-List can be set and its content is used in the generation of Messages.

�� Input of a single item of data results in the output of a Network Layer Data Request
with appropriate fields set.

The following steps are followed to carry out testing for these points:

1. A BONeS simulation is constructed with the following content:

�� A single Network-Adaption Layer Module.

�� An “Init” Module, to trigger the generation of a Management Message,
which is written to the Management Portal. The Message contains an Set
Address-List Information Element with random Addresses.

�� An “Init” Module, to trigger an infinite loop. The loop iterates with period 1
second, and generates random integers. These are sent to the upper layer
input port.

�� A “One Pulse” Module set to execute at 10 seconds, which triggers the
generation of a Network Layer Connect Indication. This is sent to the
Network Layer input port.

 143

�� “Textual Description Probes” are placed on all input and output ports of the
Network-Adaption Layer.

2. The simulation is run for 20 seconds, during which time all inputs and outputs are
written to the log file.

3. The contents of the log file are examined to ensure that

�� No Messages are generated for the first 10 seconds while the Network
Layer is (apparently) not active.

�� Messages are generated between 10 and 20 seconds that have correct length
and select a random Address from the Address-List.

4.2.5. Transport-Adaption Layer

For the correct behaviour of the Transport-Adaption Layer, the following points need
to be verified:

�� Management Connect and Disconnect operations result in Transport Connect and
Disconnect Messages.

�� Input of a single item of data results in the output of a Transport Layer Data
Request with appropriate fields set.

The following steps are followed to carry out testing for these points:

1. A BONeS simulation is constructed with the following content:

�� A single Transport-Adaption Layer Module.

�� An “Init” Module, to trigger an infinite loop. The loop iterates with period 1
second, and generates random integers. These are sent to the upper layer
input port.

�� A “One Pulse” Module set to execute at 10 seconds, which triggers the
generation of a Management Message, which is written to the Management
Portal. The Message contains a Session Connect Information Element with
a random Address.

�� A “One Pulse” Module set to execute at 20 seconds, which triggers the
generation of a Management Message, which is written to the Management
Portal. The Message contains a Session Disconnect Information Element.

�� “Textual Description Probes” are placed on all input and output ports of the
Transport-Adaption Layer.

2. The simulation is run for 30 seconds, during which time all inputs and outputs are
written to the log file.

3. The contents of the log file are examined to ensure that

�� Messages are generated that have correct lengths.

�� Connect and Disconnect Messages are generated and have correct contents.

 144

4.2.6. Routing-Module

For the correct behaviour of the Routing-Module, the following points need to be
verified:

�� Routing for a single case works.

�� Routing for multiple cases works.

The following steps are followed to carry out testing for these points:

1. A BONeS simulation is constructed with the following content:

�� A single Routing-Module Layer Module.

�� An “Init” Module, to trigger an infinite loop. The loop iterates with period 1
second, and generates Network Data Indication Messages. These are set
with random Addresses between 1 and 5 inclusive, and to random input
ports on the Routing-Module.

�� An “Init” Module that triggers the generation of Management Messages,
which are written to the Management Portal. The Messages contain Routing
Entries for Addresses 1 to 5 inclusive.

�� A “One Pulse” Module set to execute at 10 seconds, which triggers the
generation of Management Messages, which are written to the Management
Portal. The Messages contain Routing Entries for Addresses 1 to 5
inclusive. This sets up multiple paths.

�� “Textual Description Probes” are placed on all input and output ports of the
Routing-Module.

2. The simulation is run for 45 seconds, during which time all inputs and outputs are
written to the log file.

3. The contents of the log file are examined to ensure that

�� The initial routes work correctly and Messages are appropriately placed.

�� The costing mechanism for multiple routes works correctly.

4.2.7. Generator

For the correct behaviour of the Generator, the following points need to be verified:

�� All different types of Generators can be Setup; i.e. Telnet, FTP and Statistical

�� Filter parameters will correct limit the creation of data.

The following steps are followed to carry out testing for these points:

1. A BONeS simulation is constructed with the following content:

�� A single Generator Module.

�� A “One Pulse” Module, set to execute at 0 seconds, that triggers the
generation of a Management Message which is written to the Management
Portal. The Message contains Setup Generator FTP request, with a time
constraint of 5 seconds.

 145

�� A “One Pulse” Module set to execute at 10 seconds, which triggers the
generation of a Management Message, which is written to the Management
Portal. The Message contains Setup Generator Telnet request, with a time
constraint of 5 seconds.

�� A “One Pulse” Module set to execute at 20 seconds, which triggers the
generation of a Management Message, which is written to the Management
Portal. The Message contains Setup Generator Statistical request, with a
constant amount of data (1 byte) being output periodically (1 second). A
byte constraint of 5 is used.

�� A “One Pulse” Module set to execute at 30 seconds, which triggers the
generation of a Management Message, which is written to the Management
Portal. The Message contains Setup Generator Statistical request, with a
constant amount of data (1 byte) being output periodically (1 second). A
unit constraint of 5 is used.

�� “Textual Description Probes” are placed on all input and output ports of the
Generator.

2. The simulation is run for 40 seconds, during which time all inputs and outputs are
written to the log file.

3. The contents of the log file are examined to ensure that

�� Appropriate data is generated at the particular times.

�� The filter parameters terminate the generator at the requested time.

4.2.8. Management

For the correct behaviour of the Management Module, the following points need to be
verified:

�� Each Command Type can be read and parsed.

�� Time and Addressing information is correctly used.

The following steps are followed to carry out testing for these points:

1. A BONeS simulation is constructed with the following content:

�� A single Management Module.

�� Five Management Portals, with addresses 1, 2, 3, 4 and 5.

�� A Management File with each different Command Type combination, with
a command every 1 second using a random address between 1 and 5
inclusive.

�� “Textual Description Probes” are placed on all input and output ports of
the Management Module.

2. The simulation is run until termination, during which time all inputs and outputs
are written to the log file.

3. The contents of the log file are examined to ensure that

 146

�� All commands were parsed and Information Elements were created with the
correct content.

�� Management Messages were only received through Management Portals
corresponding to the Address associated with the command.

 147

PART 2. CONSTRUCTION, EXECUTION AND ANALYSIS
OF SIMULATIONS

1. Introduction
The central objectives in this thesis are concerned with the behaviour of congestion
control in Wide-Area Networks (WANs) as they apply to the Transmission Control
Protocol (TCP). The examination of this behaviour is achieved through the
construction, execution and analysis of simulations using the integrated BONeS
environment. The environment provides an ability to build and execute simulations
then collect, post-process and display simulation results without the need to
manipulate raw data sets.

The approach taken here consists of a stepwise process, starting with a basic outline of
the problem, and the abstract objectives to be reached in relation to that problem.
Following this is a more detailed discussion relating to the problem that covers any
related work on the issue. Subsequently, an approach is developed: this consists of a
high level outline of the model to be used, and the simulation to take place.

Next, the abstract simulation is transformed into a BONeS simulation. This consists of
a model, having a particular topology and static parameters. The static model is
promoted to a dynamic model by the addition of a runtime management script and
observational probes. It is then executed, possibly with a number of variations, and the
results, from the probes, are post-processed ready for interpretation and analysis.

Following the design of the simulation, it is possible to outline the expectations. This
is an important aspect, as it is unwise to carry out simulations without prior
expectations, however abstract they may be. The final stages in the process consist of
executing, analysing and drawing conclusions on the simulation.

Unfortunately, due to the unforseen circumstances surrounding this work, the final
stages of execution, analysis and conclusions could not be reached. Some conclusions
are presented based upon the expectations, however in some cases it has been difficult
to determine the expectations, as the behaviour is not well known.

2. Simulation Strategies
In general, all the simulations attempt to use models that are representative of
practical environments. Naturally, by virtue of the simplified nature of the models and
the simulation environment, this is still very much theoretical in nature.

A general problem related to simulation models is that of parameter sensitivity. This is
a situation where parameters used in the model, or simulation, bias results, and minor
variations cause significant differences in the results obtained. All simulations are
designed to run multiple times with iteration on the “Global Seed” parameter, as
recommended by BONeS. As a general principle, however, the results of all
simulations are subject to analysis to ensure that they are free from recognised defects.

 148

The attempt is to build all models and simulations upon a well-founded basis, by
ensuring that models are legitimate in their representation and parameters are realistic.
Based on this, and known theory and investigation into related work, it is possible to
develop expectations related to the simulations and their outcomes. This is a process
fundamental to all work involving experimentation. It is given careful treatment here.

3. Simulation Scenarios

3.1. Single TCP Conversation

3.1.1. Problem and Objectives

The case of a single TCP conversation is intended to look at the very basic nature of
TCP and congestion control.

Primarily, it exists as an exercise in verification and validation. The results gained
from this simple, well-understood and well-examined scenario are compared against
theoretical expectations and prior work. This process gives a high degree of assurance
that the BONeS Modules are functioning correctly and acting as representative
models. Therefore, the first objective is to carry out verification and validation.

This simple, and in some respects idealistic, scenario is also a perfect instrument for
demonstrating the basic fundamental behaviour of TCP congestion control. By such a
demonstration, a more precise understanding is developed prior to subsequent
scenarios that assume and build upon this understanding. Therefore, the second
objective is to explain the basic fundamental behaviour of TCP congestion avoidance
and control.

3.1.2. Discussion and Related Work (NOT FINISHED)

Single TCP conversations have been well studied, not only in the context of the BSD
4.4 congestion control used here [ref], but for other congestion control measures.
some of this work is particularly focused upon the nature of the congestion control,
but others have a primary focus other than the congestion control [ref].

a work that is of particular interest is [ref], as it tends to look directly at bsd 4.4, which
is precisely what is being used here. it should be noted that there are various
incarnations of tcp congestion control, such as “tahoe” and “reno”. “tahoe” basically
refers to <x>, whereas “reno” <x> [ref]. The differences tend to cloud the central
issue.

using this approach for verification and validation has been carried out before [ref], so
this is not a problem, and although we most likely will not get exact characterstics, we
will tend to see the basic behaviour present. if the behaviour is not equivalent, then we
can conclude that our model and simulation is incorrect.

when considering expectations, we can best carry out an examination by a walkthough
of the conversations lifecycle, with reference to expected graphs to be produced.

3.1.3. Approach

The approach consists of identifying the model, simulation and observations that are
required to obtain the objectives.

 149

Model

The model consists of a point-to-point TCP conversation between two Hosts. The
conversation occurs through an intermediate Link, which provides the primary
resource constraint in the network. Each Host also has a network queue, which
provides the secondary resource constraint. The model is specifically simple, it does
not employ routers.

Host 1 Host 2

Link 3

Figure 2-3.1. Simulation Model: Single TCP Conversation LAN

The model has parameters, some of which change during the execution of the
simulations. The Link’s Bandwidth and Propagation Delay do not change, they are set
to realistic values of 64kbps and 20ms respectively, intended to represent a typical
WAN situation. The queue disciplines are set to Drop Tail, as they are not of concern
in this particular scenario.

Basic Simulation

The basic simulation consists of a conversation between Host 1 and Host 2, through
Link 3. The conversation starts at time 0, and proceeds for enough time to capture an
expected transient and state steady response. 30 seconds should be sufficient for this
purpose. The conversation carries traffic (a transfer of a large unit of data) from Host
1 to Host 2, the return traffic only consists of acknowledgements.

Variations

Only one variation is considered: alteration of the queue length. Through this, it is
possible to see the effects of altered Round Trip Time (RTT) and the general effects
related to smaller or larger queue lengths. The queue length is iterated for values
between 1 and 24 (packets).

Observations

The concern is with the nature of the TCP congestion control mechanisms, so
observations are made of the TCP transmitter in Host 1. TCP congestion control
mechanisms are transmitter based, so there are no items of interest in Host 2. To
correlate the TCP congestion control with network conditions, observations are made
of the queue length and the link utilisation. The correlations are important in
illustrating the operation of TCP’s congestion control mechanisms.

3.1.4. BONeS Simulation Design

Transfer from an abstract approach into a simulation first requires the construction a
BONeS simulation module. Probes are then placed into this module to capture data
during the simulation, noting that for all runs the same probe configuration is used
(this is done for simplicity). The operation of the Basic Simulation, with details about
Parameters and execution script, is given, after which the modifications are described
for each subsequent iteration.

Every simulation is run with iteration of the “Global Seed” Parameter, at least three
times. This particular aspect is not explicitly outlined because it is carried out so that

 150

visual observation can be made to ensure that results are correct. It is fortunate that the
automated capability of BONeS allows for this to be carried out quickly and
effortlessly.

3.1.4.1. Topology

The approach is translated into an actual BONeS simulation first through the
construction of a simulation Module using the components developed on Part 1 of this
thesis. The parameters relevant to the simulation are visible in the figure.

 Point To Point [24-Dec-1995 17:38:42]

Link
3

Simulation
Management

Host
2

Host
1

M Management Portal

P Filename

P Bandw idth
P Propagation Delay
P Queue Discipline
P Queue Length

Figure 2-3.2. Simulation Topology: Single TCP Conversation LAN

3.1.4.2. Post Processing and Probe Placement

To construct information used in the analysis, Probes can be placed into the
simulation using the BONeS Simulation Manager; once placed, they are then used in
the Post Processor to generate graphs. The approach taken here is to first identify the
particular graphs that indicate critical information for analysis, and then to determine
which Probes must be placed, and where they must be placed.

 151

3.1.4.2.1. Basic Simulation

For the basic simulation, the graphs illustrate the lifecycle activity in the host and the
network.

TCP Window Information
For Host 1
Purpose To show the detailed attributes of the TCP congestion control algorithm, as it

alters during the course of the simulation. In addition, events that are
correlated with TCP congestion control activity are also captured.

X Axis (Seconds): Time
Y Axis (Bytes): Congestion Window, Slow Start Threshold, Unacknowledged Data

(No Units): Retransmission Events, Timer Expiries
Probes TCP Probes are used, and they are placed into Host 1’s Transport Layer.

TCP Computed and Actual Round Trip Time (RTT) Information
For Host 1
Purpose The RTT plays an important role in TCP congestion control. However, as it is

estimated, observations of the actual RTT should also be made.
X Axis (Seconds): Time
Y Axis (Milliseconds): RTT Value, RTT Value +RTT Variance, RTT Value - RTT

Variance, Actual RTT
Probes TCP Probes are placed into Host 1’s Transport Layer. The Actual RTT is

obtained by placing a probe into Host 1’s Transport Layer to extract the timing
information from a received acknowledgement.

Queue Information
For Host 1
Purpose The queue drops packets, and affects the RTT for packets. Its behaviour can

be correlated with that of TCP congestion control.
X Axis (Seconds): Time
Y Axis (Integer Value): Queue Length, Queue Drops
Probes Queue Probes are placed into Host 1’s Network Layer.

Transport Layer Data Transmission
For Host 1
Purpose The qualitative information about a conversation is related to its throughput

and retransmission levels. The number of transmitted and retransmitted bytes
is also affected, and can be correlated with, TCP congestion control activity.

X Axis (Seconds): Time
Y Axis (Kilobytes): KB Transmitted, KB Retransmitted
Probes TCP Probes are placed into Host 1’s Transport Layer.

 152

Transport Layer Data Transmission (95% confidence level)
For Host 1
Purpose For greater confidence in the simulation results, a confidence plot using

different initial random seeds is used. The information best used on a
confidence plot is the throughput and retransmit levels, as the assumption is
that they are relevant equivalent for a given scenario. Window and Queue
information is more highly variant, and subject to phase differences.

X Axis (Seconds): Time
Y Axis (Kilobytes): KB Transmitted, KB Retransmitted
Probes TCP Probes are placed into Host 1’s Transport Layer.

Link Utilisation
For Link 3
Purpose Because of retransmission timeouts and other events, the link may not always

be fully utilised, where under ideal conditions it should always be.
X Axis (Seconds): Time
Y Axis (Percentage): Utilisation
Probes Probes are placed into Link 3. They capture the sum of all packet lengths

passed through the link over the total capacity made available by that link
according to the length of time in the simulation.

3.1.4.2.2. Queue Length Iteration

When the queue length is iterated, the same graphs are constructed as in the Basic
Simulation. In addition, the variation in specific items as a function of the Queue
Length becomes of interest.

Throughput versus Queue Length
For Host 1
Purpose The relationship between Queue Length and Throughput tends to indicate a

“good” queue length, and the effects of queuing in general (in a first or second
order manner).

X Axis (Integer Value): Queue Length
Y Axis (Kilobytes per second): Throughput
Probes The Probes used are those from the Basic Simulation. The graph is constructed

by taking the total number of bytes transmitted for the conversation over the
time of the conversation, for each simulation run.

 153

Average RTT versus Queue Length
For Host 1
Purpose As Queue Length is increased, the RTT should be noticeably different both in

average value and variance.
X Axis (Integer Value): Queue Length
Y Axis (Milliseconds): Average RTT Value, Average RTT Variance, Average actual

RTT
Probes The Probes used are those from the Basic Simulation. The graph is constructed

by taking the average RTT for the conversation for each simulation run.

Retranmission Ratio versus Queue Length
For Host 1
Purpose Queue Lengths and Retransmission Ratios may be correlated. The

retransmission ratio is determined by taking the total number of retransmitted
bytes for a conversation and dividing by the total number of transmitted bytes.

X Axis (Integer Value): Queue Length
Y Axis (Integer): Retransmission Ratio
Probes The Probes used are those from the Basic Simulation. The graph is constructed

by computing the retransmission ratio for the conversation for each simulation
run.

3.1.4.3. Execution: Basic Simulation

In the basic simulation, the Parameters must be configured using the BONeS Set
Parameters Dialog. One such parameter is the Management Script. There is no
iteration in the basic simulation.

3.1.4.3.1. Parameters

The parameters correspond to the values discussed in the Approach.

Parameter Value Description
Filename point-to-point.txt The file contains the Management Script.
Bandwidth 64kbps Models an ISDN B Channel.
Propagation Delay 20ms Models a potential interstate delay.
Queue Discipline Drop Tail The value here is irrelevant.
Queue Length 4 Too large a value will result in excessive delay,

whereas too low a value will prohibit fast retransmit
from occurring.

The “Set Parameters Dialog” in BONeS actually looks like (although, the queue
length and the simulation is incorrect).

 154

Figure 2-3.3. Simulation Config: Single TCP Conversation LAN

3.1.4.3.2. Management Script

The Management Script is broken up into a number of steps according to the outline
given in the Approach.

Step 1: Initial Configuration at Time 0

None -- There is no initial configuration to perform.

Step 2: Establishment of TCP conversation between Host 1 and Host 2 at Time 0

Set Initial Sequence Numbers for Host 1 and Host 2 -- The initial sequence
numbers are an arbitrary value, they are not important other than the fact that
both have the same value.

0 � Host 1 : Set Parameters (ISN: 12345678)
0 � Host 2 : Set Parameters (ISN: 12345678)

Request Host 1 to Connect Session to Host 2, and Host 2 to Connect Session
to Host 1 -- The TCP conversations now enter the ESTABLISHED state,
although they do not communicate as no data is available.

0 � Host 1 : Connect Session (Addr: Host 2)
0 � Host 2 : Connect Session (Addr: Host 1)

Instruct the Generator on Host 1 to produce a single Constant unit of data --
The Generator supplies a unit of data to the TCP conversation, which proceeds
to transfer this unit of data to Host 2. There are no filter constraints.

0 � Host 1 : Setup Statistical Generator (Time: 0, Bytes: 0, Count: 0,
Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

Step 3: Terminate the simulation at time 30

Stop -- The absence of any more commands is an indication to stop.
30 � :

 155

The Management script is constructed by translating these pseudo operations using the
information provided in Part 1. This is not provided here, as it is cryptic and pointless.

3.1.4.4. Execution: Queue Length Iteration Simulation

The same Parameters and Management script are used as in the Basic Simulation,
however for the Queue Length Parameter a BONeS iteration dialog is selected. This
dialog is instructed to step through the Queue Length from values 1 to 24 inclusive.

3.1.5. Expectations (NOT FINISHED)

When the simulation commences, the TCP conversation begins operation. Initially,
the conversation sets the congestion window to the size of one segment (512 bytes),
and it sets the slow start threshold to the maximum window size (64K). This is
evidenced in the following code:

 <put code here that sets up>

TCP then transmits a single segment, and after subsequent delay receives an
acknowledgement back through the network from the receiver. When an
acknowledgment is received, the congestion window increases. Initially, the
congestion window is lower than the slow start threshold, so “slow start” is
performed. This causes the transmitter to increase the congestion window
exponentially. The following code is executed to achieve this:

 <put code here that does exp increase>.

At first glance, the code seems to carry out a linear increase, but this is misleading.
Consider that with a congestion window size of one (segment), the transmitter can
only generate one segment into the network. When the acknowledgement is received
for this one segment, it increases the window by one, and it can transmit two
segments. When each of these two acknowledgements are received, it increases the
window by one, and therefore can transmit four segments. When four
acknowledgements are received, the window is increased by one for each
acknowledgement, and thence becomes eight, ... and so on. This “slow start” phase
allows the transmitter to rapidly increase the window until it reaches the “safe” slow
start threshold (Jacobson, 1988). Figure X illustrates the behaviour of the window
during this phase.

 156

"slow start" phase
with exponential increase

"congestion avoidance"
phase with linear increase

slow start threshold

Time
(seconds)

Congestion
Window

(Kb)

R
ou

nd
 T

rip
Ti

m
e

Initially, with the slow start threshold set to 64K, the conversation will tend to always
suffer congestion before it reaches the slow start threshold, but consider for the
moment if the slow start threshold were less than 64K.

If the transmitter does not experience congestion, then at some stage the congestion
window will be advanced beyond the slow start threshold. From this point, the
transmitter changes over to the “congestion avoidance” phase (Jacobson, 1988) and
the window is increased linearly, according to the following code:

 <put code in here that does linear increase>

As before, this code may seem intuitively incorrect, but first impressions are
misleading. By increasing the window by the inverse of the window, for all
acknowledgements in the window, then the sum of all the inverse window values will
equal one. Hence, the window will increase by one segment. The “congestion
avoidance” phase is used by the transmitter to slowly probe the network in an attempt
to reach the network’s operating point (Jacobson, 1988). Figure X illustrates the
increase in the congestion window after it has reached the slow start threshold.

In the results obtained through the simulation, this behaviour should be clearly visible,
although initially it is expected that congestion will be experienced while in the “slow
start” phase. In the basic simulation, the Bandwidth of the Link is 64Kbps, and it’s
Propagation Delay is 20ms. The Queue has space for 4 packets, where the maximum
size of a packet is limited to 512 bytes (the maximum segment size). Therefore, the
Queue contains 2048 bytes of space. The space in the Link (“the pipe”) is equal to the
delay bandwidth product, or 64Kbps * 20ms = 1280 bytes. The maximum amount of
data that can be in the network at any one point in time is 3328 bytes, or 7 packets.

 157

Congestion should occur as the window increases beyond this point, represented in
Figure X.

Maximum
Queue Length

Time
(seconds)

Queue
Length

(Number)

Drops occur, then queue
depletes because of
transmitter waiting to

detected loss

Transmitter has picked up
loss and starts
(re)transmitting

The nature is cyclic

At some point in time, whether in “slow start” or “congestion avoidance”, congestion
will occur, and a packet will be dropped. This should be observable on the diagram
that displays the length of the Queue, until this point the Queue will have been slowly
growing, and the Round Trip Time (RTT) would have also been increasing, as packets
are waiting longer in the Queue. Finally, when the Queue has grown to its maximum
length, it drops an incoming packet, because it cannot fit. The expected Queue and
RTT relationships are shown in Figure X.

 <show figure here that has the queue growing, and also the RTT growing>

The transmitter in either one of two ways detects the loss. The classic way is for the
TCP retransmission timer to expire, which indicates that some acknowledgements
have not been received for the previous data sent. The retransmission timer is tailored
to be just more than the experienced Round Trip Time (RTT) as all
acknowledgements should be received within an RTT.

BSD 4.4 / Net3 (Berkeley Software Distribution, 1994) as used in the BONeS model,
has a mechanism referred to as “fast retransmit” (Stevens, 1994). The operation of
TCP is such that an acknowledgement is sent for every received segment (or
thereabouts, as TCP has a delayed acknowledgement strategy as well). If a segment
arrives out of order, potentially due to a predecessor having been dropped in the
network, the returned acknowledgement will be equivalent to the last returned
acknowledgement. TCP does not implement selective acknowledgements, so an
acknowledgement always indicates the next expected sequence number. Until the
“lost” packet is received, the acknowledgement will always ask for it. The receiver
will therefore received a number of duplicate acknowledgements, and the “fast
retransmit” strategy detects the reception of three duplicate acknowledgements and
makes a fair assumption that a packet has been dropped in the network, and therefore
that retransmission must occur. However, this assumes that the window size is

 158

currently greater than 3 segments; otherwise not enough duplicate acknowledgements
can be generated.

In this basic simulation, with a window size greater than 4 segments, loss -- and
therefore congestion --, should be detected through “fast retransmit”. On the results
obtained, this should be indicated by three acknowledgements of equivalent value,
with a retransmission event occurring upon the third, such as illustrated in the Figure
X.

slow start
threshold

Time
(seconds)

window
size
(Kb)

network space

congestion
window

"slow start"

"congestion
avoidance"

congestion occurs and
slight delay until duplicate

acks are recognised

Because loss is an indicator of congestion, a retransmission involves congestion
control activity. The behaviour of congestion control is different depending on
whether detection has been through the classic or “fast retransmit” mechanism. Under
the classic mechanism, the slow start threshold is reduced to half the current
congestion window, and the congestion window is reduced to a value of one segment.
This behaviour is due to the assumption that a safe operating point is at least half the
point at which congestion occurred (Jacobson, 1988), and that with unknown network
conditions, the slow start phase should be used.

If loss is detected through “fast retransmit”, then a mechanism called “fast recovery”
is employed. The transmitter assumes that although (at least) one packet has been lost
by the network, it should not should not slow down too much, but attempt to “keep
the pipe full” (Jacobson, 1990). In this case, it first reduces the slow start threshold to
half the current congestion window, as in the classic case, but then sets the congestion
window to a value of one segment and initiates retransmission. This should then result
in the transmission of a single segment to make up for the one that has been lost. After
this, the congestion window is set to slow start threshold plus three segment sizes.
This reduces the congestion window, but allows it to continue placing data into the
network. Upon the reception of subsequent duplicate acknowledgements (presuming

 159

that the retransmitted segment has not yet reached the receiver), the congestion
window is increased by one segment. Finally, when a non-duplicate acknowledgement
is received for the outstanding segment (or, more correctly, for the outstanding
segment and all subsequent segments sent in between), the congestion window is set
to the slow start threshold, and commences the “congestion avoidance” phase.

In the basic simulation, this situation should occur. The graphs should illustrate the
transmission of an “old” segment upon the retransmission event and the change in the
slow start threshold and congestion window. Eventually, there is reception of an
updated acknowledgement, and the congestion window alters; after which linear
increase occurs.

It may now be apparent that there is a periodic nature here, with the congestion
window advancing, reaching a maximum, and proceeding through retransmission and
then through the process again. This is a defining characteristic of the window based
congestion control algorithm that TCP employs (doesn’t it look very much like the
charge, leakage, and discharge of current in a capacitor?). For the basic simulation, the
entire lifecycle of congestion window and slow start threshold should follow this
periodic nature, and the relevant graphs would appear as Figure X.

Time
(seconds)

Round
Trip
Time
(ms) BW*D +

Queueing

BW*D

Congestion occurs, and
Queue depletes

Average Queue size
lowers, but grows during

congestion avoidance
cycle

With known network parameters, it is possible to estimate the particular values of
these characteristics. If, as previously indicated, the network has a total capacity of
3328 bytes, or 7 segments. Consider that initially, the congestion window is set to one
segment. With no queuing delays, it takes 84ms delay through the link (20ms
propagation delay, and 64ms transmission delay for 512 bytes), and the

 160

acknowledgement takes a conservative 28ms on the way back (20ms propagation
delay, and 64ms transmission delay for 64 bytes). These figures must be taken as
approximate, because lower layer headers will increase packet sizes; in a practical
network, we could only ever make approximations anyway. We can consider a
detailed analysis of the time that segments enter the queue, the arrival of
acknowledgements and the generation of new segments into the queue, but as an
approximation we can consider that the during the first RTT, there is one segment,
during the second RTT, there are two segments, during the third RTT, there are four
segments, and during the fourth RTT there are eight segments -- in the network. Each
RTT will grow by approximately 64ms due to queuing delays3. Therefore, it should be
after 784ms, or around about the 1-second mark, that congestion occurs.

To predict the periodicity of the congestion window cycle, consider that when
congestion occurs and a packet is lost, the retransmission occurs after three duplicate
acknowledgements. It returns the window to four segments, and enters congestion
avoidance. With four segments in the network, two are in the pipe, and two are in the
queue. With each round trip time, the queue increases by one (approximately), so it
takes five round trip times until congestion occurs. The round trip time is initially
100ms + 2 * 64ms = 228ms, with two segments in the queue, after which it increases
by 64ms each round trip time.

It takes five round trip times until the window reaches 8 and congestion occurs. With
four packets in the network, two will be in the pipe, and two will be in the queue, so
the round trip time is approximately 100ms + 2 * 64ms = 228ms, after an increase by
one, it is 292ms. Therefore, four round trip times are completed after about 1.7
seconds. Because of retransmission delays, and so forth, we can expect the period to
lie within the 2 to 3 second mark.

By examination of the results, this information should be visible, and it should be
possible to correlate the actual and measured round trip times, as they oscillate
between a minimum of 100ms, and a maximum of 420ms. 100ms represents the time
for two propagation delays, and delays for transmission of 512 byte and 64 byte
segments. 420ms represents this base round trip time, plus additional queuing delay of
5 maximum segments (note that a segment will enter the queue, and wait for the four
in front of it to be sent, along with the one that is currently being sent). The round trip
time graph can then be expected to look like that shown in figure x.

3This is also an approximation, because queuing delays will not occur until we have first exhausted the
“space in the pipe”, which is at least one full sized segment.

 161

Queue
Length

(Number)

Average
Round Trip

Time

The queue length will show periodicity correlated with the window, as for each period
it will initially contain two segments, and then slowly increase by one until it must
reject an incoming segment because it is full. It should look something like that shown
in figure x

 <the queue diagram>

With the known window behaviour, approximate throughput and retransmission
values can be determined. The case is that within each period, only one segment will
be lost. This gives rise to an approximate loss of anywhere up to 512 bytes every 2.5
seconds. However, during the same period, the link will be operating at maximum
utilisation (as discussed, when a retransmission occurs, the queue still has segments in
it, and the addition of new segments and additional duplicate acknowledgements mean
that the queue will never deplete). This means that during 2.5 seconds, the link
transmits a total of 20kb (at 64kbps), the fact that 512 bytes of this are retransmissions
is insignificant. The graphs for data transmission should show a linear increase at
approximately 64kbps for the data transmitted (remember, there are lower layer
headers), and a 0.5k step every 2.5 seconds for data retransmitted.

 <the data diagram>

As mentioned, the link should be fully utilised after transient start up, so we should
observe a flat response at 100%.

When the Queue length is varied, we can expect more interesting results. A greater
queue length provides more space for segments in the network, so a larger congestion
window is possible. There is an immediate problem with this, in that during the initial
transient response, the congestion window is doubled for each round trip time, until
congestion occurs. With a larger window, the potential situation is that more segments

 162

are transmitted into the network and immediately dropped. This actually parallels the
case of overshoot in the transient response of electrical circuits, and we could
potentially draw an analogy between queuing space and capacitance.

We should therefore tend to see retransmission levels that are, in the initial transient,
worse as queue length increase. However, during periodic operation, with linear
increase, retransmission levels should be slightly higher, but not significantly. Overall,
the relationship between queue lengths and retransmission ratio is expected to be
similar to that shown in figure x.

 <relationship between queue length and retransmit ratio>

The same throughput is achieved with increasing queue lengths, so we should only
tend to see a slight degradation to account for the increase in retransmission levels.
The relationship between queue lengths and throughput is shown in figure x.

 <relationship between queue length and throughput>

The big loss in increasing queue lengths is the delay introduced into the network,
which manifests itself through increased round trip times. It is important to consider
here if we did not have “fast retransmit”, then retransmission would only be detected
through the retransmission timer, which waits for at least a round trip time. Therefore,
under classic TCP, the throughput figures would be even less, due to the wait
incurred. The relationship between queue lengths and average round trip times is
shown in figure x, the rate of increase can be expected at around the 64ms mark -- to
account for the additional extra delay in the queue.

 <relationship between queue lengths and avg round trip times>

It can be further noted that without “fast recovery”, the TCP would go back and
transmit all previous segments in the window, resulting in a further increase in
retransmission levels, and decrease in overall throughput.

3.1.6. Execution of Simulation

The simulation was not executed due to the problems surrounding the unavailability
of the BONeS software.

3.1.7. Analysis of Results

No results were gathered from the simulation due to the problems surrounding the
unavailability of the BONeS software.

3.1.8. Conclusions (NOT FINISHED)

in this particular scenario, our objectives were concerned with explanation and
verification and validation. with results, we could conclude that we had indeed
produced a representative model. we can see that the tcp congestion control does
work, although it is not perfect due to losses, and the oscillitory nature. this is
recognised [ref], and the primary motiviation behind the examination of other
mechanisms [refs...]. in more complex networks, we expect to see this behaviour drift,
but the core characteristics will remain the same. we do however have a good
understanding of the basics.

 163

we can make some conclusions about the effects of increased queue lengths. an often
illhad beleif is that increased queueing in a network can be beneficial, but as our
expectations tell us, increased queue does nothing more than <x,y,z>

 164

3.2. Multiple TCP Conversations through bottleneck WAN
Router

3.2.1. Problem and Objectives

In practice, congestion control measures operate in shared environments where they
must interact and co-operate with each other. The first scenario considered the case of
a simple TCP conversation, in a point-to-point situation. The second scenario seeks to
build upon that by introducing competing parties, and by expanding the topology to a
more realistic level. The conversations now will not only interact with network
constraints, but also with their peers.

The basic objective in this scenario is to examine the competitive nature of the TCP
congestion control mechanisms and their behavioural relationships with other traffic
in the network. Originally, this scenario was to involve iteration with various
congestion control strategies in an attempt to compare the relative advantages and
disadvantages of each one, but these strategies have not been implementation and time
limitations have prevented this from occurring.

The problems recognised with co-operating congestion control mechanisms, in
general, seem to involve Round Trip Times (RTT), but there are other problems. It is
desired to view, examine and explain these problems as they manifest themselves in
the scenario executed here. Therefore, the first objective is to examine the nature of
TCP congestion control in a shared and competitive environment.

In the same manner as the first scenario, this scenario is also intended to serve as a
platform to explain the basic behavioural aspects of the TCP congestion control
mechanisms. In accordance with the first objective, the focus here is upon those
aspects as they relate to co-operation and interaction between conversations.
Therefore, the second objective is to further the explanation of the nature of the TCP
congestion control mechanisms.

It should be noted that the understanding gained through these first two scenarios is
particularly important for the last three scenarios, which implicitly assume prior
understand of the issues raised and discussed here.

3.2.2. Discussion and Related Work (NOT FINISHED)

competing tcp conversations have been the focus of many studies [ref]. these studies
consider the role both the tcp [ref] and the intemrediate systmes [ref] play in the
behaviour.

the problems associated with rtt have been looked at by [ref], whereas [ref] has
considered how the particulars of the mechanism can cause what is referred to as
“phase effects”, where particular conversations in competition can be subject to
significant discrimination. interesting enough, [ref] comments that this may be
entirely due to the particulars of the simulation environment, and rarely [if ever]
present in actual environments.

[ref] .. [ref] has looked at the the effects of intermediate queue policies in depth, and
developed “random early detection”.

 165

we have a basic understanding about what should occur, but by the knowledge about
our own environment, we can be more detailed in our examination.

3.2.3. Approach

The approach consists of identifying the model, simulation and observations that are
required to obtain the objectives.

Model

The model consists of a typical WAN environment having a three LANs
interconnected through a central WAN Router. Each LAN has a number of Hosts,
which are internally connected to a LAN Router. The Links between the LAN Router
and the WAN Router provide the primary resource constraint in the network. The
queues in the WAN Router provide the secondary resource constraint. This provides
the general case of high speed LANs, interconnected by a lower speed WAN.

LAN-1Host 11

IS 10
Link 16

Link 17

IS 1

LAN-2

Host 22

Host 21

IS 20

Link 27

Link 26

LAN-3

Host 31

IS 30

Link 36

Link 37

Link 5

Link 6

Link 7

Traffic 12

Traffic 32

Figure 2-3.4. Simulation Model: Multiple TCP Conversation WAN

A number of parameters in the model are fixed. The LANs employ Links with
Bandwidth and Propagation Delay of 10Mbps and 1ms, in order to represent a typical
Ethernet environment. The LAN Routers are configured with appropriate routing
entries and their queue length and discipline is not of concern, so is set to 15 (packets)
and Drop Tail, respectively. Observation is made to ensure that the LAN Routers do
not become congested. The WAN Links have a Bandwidth of 64Kbps, and

 166

Propagation Delay of 20ms, to represent typical low speed WAN connections. The
WAN Router is set to use a queue length of 8 and a discipline of Drop Tail. The
routing table for the WAN Router is set to ensure that all Hosts and Traffic used in the
simulation can communicate with each other. Iterations of the simulation alter the
WAN Links and WAN Router parameters.

Basic Simulation

The basic simulation starts with a conversation between Host 11 in LAN 1 and Host
21 in LAN 2. This conversation passes through Link 5 and Link 6, and carries one-
way traffic (a transfer of a large unit of data) between Host 11 and Host 21. The return
traffic consists only of acknowledgements. This conversation runs for a time sufficient
to allow it to reach steady state, for which 30 seconds should be appropriate.

During this phase, observations are made of the TCP transmitter in Host 11, and the
queue for Link 6 in the WAN Router. These observations should be similar to those
seen in the first scenario and are not important in this scenario.

After 30 seconds, a second conversation is started between Host 31 in LAN 3 and
Host 22 in LAN 2. This conversation passes through Link 6 and Link 7, and carries
one-way traffic (a transfer of a large unit of data) between Host 31 and Host 22. The
return traffic consists only of acknowledgements. This conversation runs for 90
seconds.

During this phase, important observations are made relating to the co-operation
between both TCP transmitters, and therefore the TCP transmitters in Host 11 and in
Host 31 are examined. The queue for Link 6 in the WAN Router now provides detail
on occupancy as a whole, and for each conversation. To ensure the correct operation
of the simulation, the queues for the WAN Links at the LAN Routers are monitored
along with the utilisation of the WAN Links themselves.

The observations will tend to show congestion occurring at the WAN Router, and then
each conversation attempting to reach and maintain a stable (but possibly oscillating)
operating points.

At 120 seconds, when sufficient observation has been made of phase 2, Traffic is
generated between Host 32 in LAN 3 and Host 12 in LAN 1. The traffic (uniformly
random data at poisson time intervals) will traverse Link 5 and Link 7, in both
directions. This is allowed to run for 30 seconds.

During this phase, the same observations are made as in the previous phase, although
more care is taken to ensure that the queues for the WAN Links in LAN Routers don’t
become congested. Additional observations are made of the queues in the WAN
Routers for Links 5 and Links 7, but only for data on the two main TCP
conversations.

The simulation is stopped after 150 seconds.

Variations

There is interest in examining the effects of RTT values, particularly with respect to
bias effects. To achieve this, the basic simulation is run by iterating the Propagation
Delay in Link 7. This causes the conversation between Host 31 in LAN 3 and Host 21
in LAN 2 to incur an RTT different to that of the other conversation. The iteration can
use values from 10ms to 200ms in increments of 10ms.

 167

To examine the involvement of the Router in terms of its Queue Discipline, iterations
are performed using either Drop Tail or Random Drop. These are carried out in
addition to the RTT iteration, i.e. providing an additional indication of how particular
RTT effects manifest themselves depending on the particular discipline in use.

Finally, as an attempt to better judge the effects of the introduced background traffic,
iterations are performed to alter its characteristic. To enhance acknowledgement
compression, it is desired to have potentially larger delays in the queues, however it is
not desired to have congestion occur; therefore the iteration occurs on the size of the
packets generated as traffic, not upon the number (i.e. frequency) generated.

 Observations

As mentioned, the primary observations are performed on Host 11, Host 31 and in
WAN Router. Secondary observations are made of WAN Link utilisation and the
lengths of the Queues in the LAN Routers for the WAN Links.

For Host 11 and Host 31, TCP characteristics as gathered in the first simulation are
observed. For the WAN Router, the lengths of the queues are observed, both in an
absolute sense and as for each conversation.

3.2.4. BONeS Simulation Design

Transfer from an abstract approach into a simulation first requires the construction a
BONeS simulation module. Probes are then placed into this module to capture data
during the simulation, noting that for all runs the same probe configuration is used
(this is done for simplicity). The operation of the Basic Simulation, with details about
Parameters and execution script, is given, after which the modifications are described
for each subsequent iteration.

Every simulation is run with iteration of the “Global Seed” Parameter, at least three
times. This particular aspect is not explicitly outlined because it is carried out so that
visual observation can be made to ensure that results are correct. It is fortunate that the
automated capability of BONeS allows for this to be carried out quickly and
effortlessly.

3.2.4.1. Topology

 168

 Simple WAN [24-Dec-1995 17:39:03]

A A B B C C D D E E

LAN -
Traffic
C

LAN
B

LAN -
Traffic
A

Router
1

Link
CLink

B

Link
A

Simulation
Management

M Management Portal

P Filename

P Router: Queue Length
P Router: Queue Discipline

P Bandwidth - A
P Propagation Delay - A

P Bandwidth - B

P Propagation Delay - B

P Bandwidth - C

P Propagation Delay - C

Figure 2-3.5. Simulation Topology: Multiple TCP Conversation WAN

The approach is translated into an actual BONeS simulation first through the
construction of a simulation Module using the components developed on Part 1 of this
thesis. The parameters relevant to the simulation are visible in the figure.

3.2.4.2. Post Processing and Probe Placement

To construct information used in the analysis, Probes can be placed into the
simulation using the BONeS Simulation Manager; once placed, they are then used in
the Post Processor to generate graphs. The approach taken here is to first identify the
particular graphs that indicate critical information for analysis, and then to determine
which Probes must be placed, and where they must be placed.

3.2.4.2.1. Basic Simulation

For the basic simulation, the graphs illustrate the lifecycle activity in the host and the
network. Interest is with both TCP transmitters, and the queuing information from the
WAN Router.

TCP Window Information
For Host 11, Host 31
Purpose To show the detailed attributes of the TCP congestion control algorithm, as it

alters during the course of the simulation. In addition, events that are
correlated with TCP congestion control activity are also captured.

X Axis (Seconds): Time
Y Axis (Bytes): Congestion Window, Slow Start Threshold, Unacknowledged Data

(No Units): Retransmission Events, Timer Expiries
Probes TCP Probes are used, and they are placed into Host 11 and Host 31’s

Transport Layer.

 169

TCP Computed and Actual Round Trip Time (RTT) Information
For Host 11, Host 31
Purpose The RTT plays an important role in TCP congestion control. However, as it is

estimated, observations of the actual RTT should also be made.
X Axis (Seconds): Time
Y Axis (Milliseconds): RTT Value, RTT Value +RTT Variance, RTT Value - RTT

Variance, Actual RTT
Probes TCP Probes are placed into Host 11 and Host 31’s Transport Layer. The

Actual RTT is obtained by placing a probe into Host 11 and Host 31’s
Transport Layer to extract the timing information from a received
acknowledgement.

WAN Router Queue Information
For WAN Router for Host 11, Host 31, Host 21, Host 22
Purpose The queue drops packets, and affects the RTT for packets. Its behaviour can

be correlated with that of TCP congestion control.
X Axis (Seconds): Time
Y Axis (Integer Value): Queue Length, Queue Drops
Probes Queue Probes are placed into the WAN Router’s Network Layer to capture the

total queue length, and the queue usage for the particular destination addresses
given. The Network Layers are those that connect to the link that is directed
towards the destination in question.

Transport Layer Data Transmission
For Host 11, Host 31
Purpose The qualitative information about a conversation is related to its throughput

and retransmission levels. The number of transmitted and retransmitted bytes
is also affected, and can be correlated with, TCP congestion control activity.

X Axis (Seconds): Time
Y Axis (Kilobytes): KB Transmitted, KB Retransmitted
Probes TCP Probes are placed into Host 11 and Host 31’s Transport Layer.

Transport Layer Data Transmission (95% confidence level)
For Host 11, Host 31
Purpose For greater confidence in the simulation results, a confidence plot using

different initial random seeds is used. The information best used on a
confidence plot is the throughput and retransmit levels, as the assumption is
that they are relevant equivalent for a given scenario. Window and Queue
information is more highly variant, and subject to phase differences.

X Axis (Seconds): Time
Y Axis (Kilobytes): KB Transmitted, KB Retransmitted
Probes TCP Probes are placed into Host 11 and Host 31’s Transport Layer.

 170

WAN Link Utilisation
For Link 5, Link 6, Link 7
Purpose Because of retransmission timeouts and other events, the link may not always

be fully utilised, where under ideal conditions it should always be.
X Axis (Seconds): Time
Y Axis (Percentage): Utilisation
Probes Probes are placed into Link 5, Link 6 and Link 7. They capture the sum of all

packet lengths passed through the link over the total capacity made available
by that link according to the length of time in the simulation.

LAN Router Queue Information

For LAN 1 Router, LAN 2 Router, LAN 3 Router
Purpose These routers should not play a significant role in the simulation, so they are

observed to ensure that they don’t.
X Axis (Seconds): Time
Y Axis (Integer Value): Queue Length, Queue Drops
Probes Queue Probes are placed into the LAN 1 Router, LAN 2 Router and LAN 3

Router’s Network Layer to capture the total queue length, and the queue usage
for the particular destination addresses given. The Network Layers are those
that connect to the link that is directed towards the destination in question.

3.2.4.2.2. RTT Iteration

When the RTT is iterated for one of the conversations, various relationships are
measures to assess the impact.

Average Queue Share versus. RTT Ratio
For WAN Router, Host 11 and Host 31 into Link 6
Purpose When the two conversations are competing, they share the queue. This share

may alter depending upon RTTs
X Axis (Real Value): RTT Ratio
Y Axis (Integer Value): Average Queue Length
Probes The Probes used are those from the Basic Simulation. The RTT ratio is taken

by computing the average RTT for both conversations, and dividing them. The
Queue Length is the average length computed for each particular conversation
across the life of the simulation.

 Throughput versus. RTT Ratio
For Host 11 and Host 31
Purpose Throughput is related to RTT ratio.
X Axis (Real Value): RTT Ratio
Y Axis (Integer Value): Throughput
Probes The Probes used are those from the Basic Simulation. The RTT ratio is taken

by computing the average RTT for both conversations, and dividing them. The
throughput is taken as the total number of bytes transmitted for the
conversation over the time of the conversation, for each simulation run.

 171

Retransmission Ratio versus. RTT Ratio
For Host 11 and Host 31
Purpose Throughput is related to RTT ratio.
X Axis (Real Value): RTT Ratio
Y Axis (Integer Value): Retransmission Ratio
Probes The Probes used are those from the Basic Simulation. The RTT ratio is taken

by computing the average RTT for both conversations, and dividing them. The
retransmission ratio is constructed for each conversation in each simulation
run.

3.2.4.2.3. Traffic Level Iteration

When the traffic level is iterated, the effects on performance are examined.

 Throughput versus. Traffic Level
For Host 11 and Host 31
Purpose As the level of background traffic increases, the throughput levels may suffer

due to the share with acknowledgements.
X Axis (Kilobytes per second): Traffic Level
Y Axis (Integer Value): Throughput
Probes The Probes used are those from the Basic Simulation. The RTT ratio is taken

by computing the average RTT for both conversations, and dividing them. The
throughput is taken as the total number of bytes transmitted for the
conversation over the time of the conversation, for each simulation run.

Retransmission Ratio versus. Traffic Level
For Host 11 and Host 31
Purpose As the background traffic increases, more retransmissions may occur, due to

the loss of acknowledgements or for other reasons.
X Axis (Kilobytes per second): Traffic Level
Y Axis (Integer Value): Retransmission Ratio
Probes The Probes used are those from the Basic Simulation. The RTT ratio is taken

by computing the average RTT for both conversations, and dividing them. The
retransmission ratio is constructed for each conversation in each simulation
run.

Average RTT versus Traffic Level
For Host 11 and Host 31
Purpose As the background traffic increases, the average RTT should increase due to

the increased loading for returned acknowledgments
X Axis (Kilobytes per second): Traffic Level
Y Axis (Milliseconds): Average RTT Value, Average RTT Variance, Average actual

RTT
Probes The Probes used are those from the Basic Simulation. The graph is constructed

by taking the average RTT for the conversation for each simulation run.

 172

3.2.4.3. Execution: Basic Simulation

In the basic simulation, the Parameters must be configured using the BONeS Set
Parameters Dialog. One such parameter is the Management Script. There is no
iteration in the basic simulation.

3.2.4.3.1. Parameters

The parameters correspond to the values discussed in the Approach.
Parameter Value Description
Filename multiple.txt The file contains the Management Script
WAN Router:
Queue Length

4 A relatively typical length.

WAN Router:
Queue Discipline

Drop Random In the Basic Simulation, choose the best.

Link 1:
Bandwidth

64kbps Model an ISDN B Channel.

Link 1:
Propagation Delay

20ms Model a typical delay.

Link 2:
Bandwidth

64kbps Model an ISDN B Channel.

Link 2:
Propagation Delay

20ms Model a typical delay.

Link 3:
Bandwidth

64kbps Model an ISDN B Channel.

Link 3:
Propagation Delay

20ms Model a typical delay.

3.2.4.3.2. Management Script

The Management Script is broken up into a number of steps according to the outline
given in the Approach. The place at which alterations are made for the Traffic Level
iteration is highlighted in bold.

Step 1: Initial configuration at Time 0

Set Routing Entries for the Router at the WAN -- The routing entries need to
indicate that the particular Hosts within each LAN are reachable via their
respective Links.

0 � Router 1 : Set Route Entry (Addr: Host 11, If: Link 1, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Traf 14, If: Link 1, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 21, If: Link 2, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 22, If: Link 2, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Traf 24, If: Link 2, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 31, If: Link 3, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Traf 34, If: Link 3, Cost: 1)

Set Routing Entries for the Router in LAN 1 -- The routing entries need only
be set for the Hosts that communicate to and from LAN 1.

0 � Router 10 : Set Route Entry (Addr: Host 11, If: Link 16, Cost: 1)
0 � Router 10 : Set Route Entry (Addr: Traf 14, If: Link 19, Cost: 1)
0 � Router 10 : Set Route Entry (Addr: Host 21, If: Link 1, Cost: 1)
0 � Router 10 : Set Route Entry (Addr: Traf 34, If: Link 1, Cost: 1)

 173

Set Routing Entries for the Router in LAN 2 -- The routing entries need only
be set for Hosts that communicate to and from LAN 2.

0 � Router 20 : Set Route Entry (Addr: Host 21, If: Link 26, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 22, If: Link 27, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Traf 24, If: Link 29, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 11, If: Link 2, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 31, If: Link 2, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Traf 34, If: Link 2, Cost: 1)

Set Routing Entries for the Router in LAN 3 -- The routing entries need only
be set for Hosts that communicate to and from LAN 3.

0 � Router 30 : Set Route Entry (Addr: Host 31, If: Link 36, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Traf 34, If: Link 39, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Host 22, If: Link 3, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Traf 14, If: Link 3, Cost: 1)

Step 2: Establishment of TCP conversation between Host 11 in LAN 1 and Host 21 in
LAN 2 at Time 0

Set Initial Sequence Numbers for Host 11 and Host 21.
0 � Host 11 : Set Parameters (ISN: 12345678)
0 � Host 21 : Set Parameters (ISN: 12345678)

Request Host 11 to Connect Session to Host 21, and Host 21 to Connect
Session to Host 11.

0 � Host 11 : Connect Session (Addr: Host 21)
0 � Host 21 : Connect Session (Addr: Host 11)

Instruct the Generator on Host 11 to produce a single Constant unit of data.
0 � Host 11 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

Step 3: Establishment of TCP conversation between Host 31 in LAN 3 and Host 22 in
LAN 2 at Time 30

Set Initial Sequence Numbers for Host 31 and Host 22.
30 � Host 31 : Set Parameters (ISN: 12345678)
30 � Host 22 : Set Parameters (ISN: 12345678)

Request Host 31 to Connect Session to Host 22, and Host 22 to Connect
Session to Host 31.

30 � Host 31 : Connect Session (Addr: Host 22)
30 � Host 22 : Connect Session (Addr: Host 31)

Instruct the Generator on Host 31 to produce a single Constant unit of data.
30 � Host 31 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

Step 4: Establishment of Traffic between Traffic 14 in LAN 1 and Traffic 34 in LAN 3
at Time 90

Set Address Lists on Traffic 14 for Traffic 34, and on Traffic 34 for Traffic 14
90 � Host 14 : Set Address List (Num: 1, Addr: 34)
90 � Host 34 : Set Address List (Num: 1, Addr: 14)

Instruct the Generator on Traffic 14 and Traffic 34 to produce poisson units of
data -- the value used here is subject to iteration, i.e. the Length.

 174

90 � Host 14 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: POISSON, Lambda: X), Space (Type: CONSTANT, Value:
<ITER>))
90 � Host 34 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: POISSON, Lambda: X), Space (Type: CONSTANT, Value:
<ITER>))

Step 5: Terminate the simulation at Time 150

Stop.
150 � :

The Management script is constructed by translating these pseudo operations using the
information provided in Part 1. This is not provided here, as it is cryptic and pointless.

3.2.4.4. Execution: RTT Iteration Simulation

The same Parameters and Management script are used as in the Basic Simulation,
however for the Propagation Delay for Link 3, a BONeS iteration dialog is selected.
This dialog is instructed to step through the Propagation Delay from values 10ms to
200ms. This procedure is carried out twice, first for a Queue Discipline of “DropTail”
and second for a Queue Discipline of “DropRandom”.

3.2.4.5. Execution: Traffic Level Iteration Simulation

The same Parameters are used as in the Basic Simulation, however a number of
Management Scripts are created, to iterate the “Space” Parameter for the Statistical
Generator between 1 and 256.

3.2.5. Expectations (NOT FINISHED)

During the initial phase of the simulation, the TCP conversation between Host 11 and
Host 21 will exhibit the same characteristics as described in the expectations of the
previous simulation. This includes the transient start up, and periodic steady state
response.

The second conversation commences operation at 30 seconds; by this time the first
conversation will well and truly be oscillating around the operating point of the
network. Although it is possible to consider the network parameters and compute
transient and steady state response characteristics, this tends to be problematic as a
slight deviance in our figures will result in a potentially entirely different value for the
window at the 30 second mark.

The second conversation will immediately inject segments into the network, as it will
commence exponential increase of the congestion window. Congestion should occur
within one or two round trip times, which for this network can be considered
approximately 80ms in propagation delays (two double WAN link propagation delays)
plus 128ms in transmission delays (two WAN link propagation delays), plus (say)
queueing delay of two segments in the WAN Router, at 128ms: a total of
approximately 350ms (ignoring transmission delays due to acknowledgements). These
figures are approximate, for the very good reason that the LANs will also introduce
their own (albeit small) delays. Therefore, after some 500ms of the second
conversation being introduced, both should experience congestion. Our observed
results for the TCP transmitters should like similar to those shown in figure x at this
point.

 175

 <tcp transmitters>

With the first conversation consuming more space than the first, it is more likely that
it will incur loss first, however this is not definite but made more likely through the
use of Random Drop (Floyd & Jacobson, 1993). We can make some estimations here.
Consider that the first conversation would have had full use of the network. With the
given network parameters, this corresponds to 320 bytes of space in the WAN pipes (1
segment), and 4096 bytes of space in the Routers (4 segments in each of the LAN
Router and WAN Router), giving a total space of about 4500 bytes or 8 segments. If
this is the maximum space available, then the first conversation’s slow start threshold
should be approximately 5 segments, and its congestion window will be anywhere
between 5 and 8 segments, say 7 segments.

The second conversation will incur congestion with a lower congestion window, say 2
segments. Both conversations will then half their slow start threshold, to say 3
segments and 1 segments respectively. Although our observations will not have these
exact figures, the approximate magnitudes should be apparent, the exact figures are
not are important as the basic concept. Both transmitters will then proceed through the
linear increase of congestion avoidance. Consider that they will have a roughly
equivalent round trip time, so their congestion windows will increase at the same rate.
So, after the first round trip time, their windows will be 4 and 2 respectively, then 5
and 3, then 6 and 4 and possibly 7 and 5 before congestion occurs. When they are
halfed, they retreat to 3 and 2 respectively. It is clear than after each epoch, they tend
to become more fairer in their use of the bottleneck. The observations of the
congestion window and slow start theshold during this equilibrium attainment period
should look like this shown in figure x.

 <converations coming to equailibvrum>

The observations from the router’s queue will tend to support this by showing a
gradual share. With the small queue size in the basic simulation, this behaviour will
not be as apparent as it is with the larger queue sizes. When the queue length is larger,
the syncronisation period will be larger (due to the increased round trip time, which
results in larger periods as shown in first imulation), and therefore equilibrium will
take longer to occur. This indicates another case in which increased queueing impacts
upon performance.

The results we obtain for actual and retransmitted data levels will be correlated with
the congestion window, in that the first conversation will gradually lose throughput
until both it and the second conversation oscillate around the same value. As found
through the first simulation, retransmission levels should also be correlated with
transmission levels due to the larger congestion windows in operation.

Our next interest is with variations in the propagation delay on Link 7. When this
occurs, the second conversation will be subject to greater round trip times than the
first conversations. It was shown that with equivalent round trip times, both
transmitters increase their windows equallly during congestion avoidance, however
with different round trip times, these rates of increase will also differ. Hence, when
congestion occurs, the conversation with the larger round trip time will have gained
less than the other conversation. It is expected that a fair equilibrium is never
obtained.

 176

When executing these iterations, the observations gained should tend to reflect a case
that with greater difference in round trip times, the available space given to one
conversation will be proportionally different to that given to the other. The
conversation with the larger share of the space will, however, suffer a greater level of
retransmissions in accordance with its greater share. Therefore, our observations for
queuing shares, retransmission ratios and throughputs as a function of the queue
length are shown in figure x.

 <show diagram of rtt vs q share, rtt vs retx, rtt vs. thru>

The introduction of background traffic to the conversation is specific designed so that
it does not affect the forward direction of transfer, therefore it only impacts upon the
reverse direction of each conversation. The reverse direction of each conversation
does not carry traffic, but carries acknowledgements. With introduced background
traffic, the acknowledgements will be subject to additional queueing delay.

Because of this, the average round trip times for each conversation should increase,
and the variance in the round trip times should also become larger. The immediate
impact upon the transmitters is expected to be a drop in throughput, as the TCP uses
received acknowledgements to generate new traffic, and suddenly all
acknowledgements are subject to additional delay. However, this is only a small
transient set back. The expected relationship betwene round trip times and traffic
levels is shown in figure x.

 <round trip times vs. traffic levels>

The main behaviour we expect to see is that acknowledgements will not be received
with regular spacing. Without any traffic in the reverse direction, all
acknowledgements generated by the receiver arrived through the network with the
same spacing provided by the receivers. Due to the constraints within the network, the
receivers can only receive their data packets (in the forward direction) at regular
intervals, therefore the reverse acknowledgements are at such regular intervals. When
the spacing is not regular, we expect to see a condition known as ack compression
[ref].

With background traffic, an acknowledgement may arrive into the queue and be
subject to no delay, significant delay or, in the worst case, it may be dropped due to
congestion. If the acknowledmgenet is delayed, then it will obviously be closer to the
acknowledgement that follows it. If the acknowledgement is dropped, then the
subsequent acknowledgement subsumes the original acknowledgement. The
transmitter, upon reception of the acknowledgment, will be able to transmit data
straight away.

The closer the acknowlegemnts are toghether, or the larger they are, then the more the
transmitter will place into the network at the one point in time. The result will tend to
be that instead of generating regularily spaced segments that interleave with those of
the other conversation, the transmitter will generate bursts of segments, which have
more potential to overflow the queues in the network.

It should be remembered that although the network is capable of supporting a specific
amount of data, it supports this data spread out through the network, not at one
particular point within the network. The ack compression is expected to disrupt the
even distribution of segments within the network and therefore increase levels of

 177

retransmission, and in general result in a reduction of throughput. The expected
relationship is shown in figure x.

 <throughput vs. traffic level>

 <retransmissions vs. traffic level>

3.2.6. Execution of Simulation

The simulation was not executed due to the problems surrounding the unavailability
of the BONeS software.

3.2.7. Analysis of Results

No results were gathered from the simulation due to the problems surrounding the
unavailability of the BONeS software.

3.2.8. Conclusions (NOT FINISHED)

The primary objective was concerned with using this simulation more as tool for
validation and verification. As no actual simulation has been carried out, it was not
possible to make this assessment, however through the expectations gathered, we can
conclude that the simulation will exhibit important TCP congestion control
characteristics.

It is expected that when multiple conversations compete, bias to conversations with
shorter round trip times will occur, and performance losses will be incurred by those
conversations wither larger round trip times. This is consistent with the results from
other work [ref].

When background traffic is introduced, the acknowledgement compression is
expected to occur, which tend to better reflect actual environment conditions. The
result of acknowledgement compression will be increased cases of bursty traffic
emanating from the TCP transmitter, and therefore decreased levels of performance
due to the resulting increase of congestion in the network.

 178

3.3. Single TCP Conversation in Multiple-Path, Dynamically
Routed WAN

3.3.1. Problem and Objectives

This scenario concerns itself with the first major issue identified in relation to the
Transmission Control Protocol’s (TCP) congestion control mechanisms as they apply
in Wide-Area Network (WAN) environments.

The concern is based around the knowledge that the characteristics of WANs are
changing from those that existed at the time the TCP and its congestion control
measures were devised and instrumented. In particular, the size and complexity of
WANs is increasing, leading to situations where an individual conversation may now
traverse different paths and be subject to different conditions during its lifetime. In
particular, these conditions change within a single Round Trip Time (RTT) of the
conversation.

Through the previous scenarios and related work, it has been recognised that RTTs
play a significant role in the operation of TCP and its congestion control mechanisms,
mostly through the closed loop feedback aspect of TCP congestion control. Problems
related to RTTs include fairness bias, and acknowledgement compression. These
prove detrimental to the qualitative aspects of a conversation.

It is suspected that a WAN environment with multiple paths, employing some form of
dynamic routing (such as selecting a path depending upon localised congestion
conditions) will cause packets within a single conversation to traverse different paths,
and therefore be subject to RTTs with a high variance. In addition, the incidence of
out of order delivery will become more frequent, and returned acknowledgements will
not provide the regular clocking that TCP congestion control requires.

Existing work has not adequately addressed environments of this nature, and in
general has focused upon relatively simple networks -- this is a well recognised
problem. It may be the case that the effects introduced by these complex network
scenarios, can be modelled by simpler network scenarios by through traffic effects.
This is intuitive, but as yet has not been examined in detail

Therefore, the objective of is to examine the effects of multiple paths and dynamic
routing, and to determine the impact it has on the operation of TCP’s congestion
control mechanisms.

3.3.2. Discussion and Related Work (NOT FINISHED)

through investigation, it does not appear that this particular problem has been
addressed before. we are aware of what rtt effects can do the tcp congsetion control
through the previous simulations. the closest work applicable is that which considers
the effects of link failures.

link failures are in some respects similar, but ...

it is acknowledged that the case of more complex network should reciver greater
attention.

 179

3.3.3. Approach

The approach consists of identifying the model, simulation and observations that are
required to obtain the objectives.

Model

The Model consists of two LANs, separated by a WAN environment with rich
connectivity. Within the WAN environment, there are a number of Routers, each of
which has an associated Traffic generator used to represent other Traffic in the
network, which is not attributed to the two LANs under investigation. The WAN
Routers are configured in such a way that multiple paths can be selected between the
two LANs.

 180

LAN-4

Host 42

Host 41

IS 40

D 47

D 46

LAN-5

Host 51

Host 52

IS 50

D 56

D 57

IS 1

IS 2 IS 3

IS 4

IS 5

Traffic 32

Traffic 33

Traffic 34

Traffic 30

Traffic 31

D 10
D 22

D 11
D 12

D 13

D 14 D 15 D 16

D 18

D 17

D 20

D 23

D 21

D 24

Figure 2-3.6. Simulation Model: Single TCP Conversation WAN

Most parameters are fixed. The LANs are modelled as high speed Ethernet LANs;
therefore they have Link Bandwidth and Propagation Delays of 10Mbps and 1ms
respectively. The queue length and discipline in the LAN Routers is not important, as
they do not have roles in the simulation. Within the network, all WAN Links have
Bandwidth and Propagation Delays of 64Kbps and 20 ms respectively: modelling an
ISDN environment. The queue lengths and disciplines are set to 8 (packets) and Drop
Random respectively, noting that these two parameters will be iterated.

The important aspect of the model is the interconnectivity. A number of paths exist
between the two LANs, requiring configuration of the WAN Routers. The WAN
Routers are subject to queue loading from the LAN and from the Traffic sources; the
Traffic sources play a virtually important role in this respect. The WAN Router selects

 181

a path depending on queue loading for the interface associated with that path. The
WAN Routers are configured, and as a result the potential paths are as such.

Path Propagation Delay
Link 10, 13, 18 3x
Link 10, 12, 16, 18 4x
Link 10, 12, 15, 17, 18 5x
Link 10, 12, {15, 15}, 16, 18 (4 + 2n)x
Link 10, 12, {15, 15}, 15, 17, 18 (5 + 2n)x
Link 10, 11, 14, 17, 18 5x
Link 10, 11, 14, 15, 16, 18 6x
Link 10, 11, 14, {15, 15}, 17, 18 (5 + 2n)x

(6 + 2n)x Link 10, 11, 14, {15, 15}, 15, 16, 18

Basic Simulation

The basic simulation starts with a conversation between Host 11 in LAN 1 and Host
21 in LAN 2. This conversation carries one-way traffic (a transfer of a large unit of
data) between Host 11 and Host 21. The return traffic consists only of
acknowledgements. This conversation runs for a time sufficient to allow it to reach (a
reasonable) steady state, for which 60 seconds should be appropriate.

During this phase, observations are made of the TCP transmitter in Host 11, and in
Host 21. This particular scenario requires observation of the TCP receiver’s
reassembly queue size and -- critically -- the TCP transmitter’s RTT values. The
queue in every WAN Router is also observed, to determine the path taken by the
conversation, and the utilisation of all WAN Links by the conversation is also
observed.

At 60 seconds, when sufficient observation has been made of Phase 1, traffic is
generated from all Traffic sources. The traffic (uniformly random data at poisson time
intervals) will traverse all Links and affect all queues. This is allowed to run for 120
seconds.

During this phase, the same observations are made as in the previous phase, however
it is expected that average queue occupancy and total Link utilisation increases. Care
must be taken to ensure that the conversation between Host 11 and Host 21 is subject
to switching by the Routers due to queue loading effects.

The simulation is stopped after 180 seconds.

Variations

There is interest in altered queue lengths, to examine the impact upon performance
due to the increase RTT values experienced through the network. As such, the first
variation consists of execution the basic simulation with iterations on the WAN
Router queue lengths. These lengths are iterated between 1 and 64.

To examine the effects of the introduced background traffic, iterations are performed
to alter its characteristic. This is desirable to increase the level of congestion and delay
in the network along with the effect that occurs in relation to dynamic routing. The
iteration alters the frequency of traffic generated.

 182

Observations

As mentioned, the primary observations are performed on Host 11 and Host 21 and in
the WAN Routers. Observations are also made of WAN Link utilisation.

For Host 11, TCP characteristics as gathered in the first simulation are observed. For
Host 21, only the size of the reassembly queue and the network layer’s hop count field
is of importance, in an effort to gauge the effects of out of order delivery. The hop
count field illustrates whether dynamic routing is sufficiently occurring.

For the WAN Routers, the lengths of all queues are examined, both for their absolute
occupancy, and for packets on the main conversation.

3.3.4. BONeS Simulation Design

Transfer from an abstract approach into a simulation first requires the construction a
BONeS simulation module. Probes are then placed into this module to capture data
during the simulation, noting that for all runs the same probe configuration is used
(this is done for simplicity). The operation of the Basic Simulation, with details about
Parameters and execution script, is given, after which the modifications are described
for each subsequent iteration.

Every simulation is run with iteration of the “Global Seed” Parameter, at least three
times. This particular aspect is not explicitly outlined because it is carried out so that
visual observation can be made to ensure that results are correct. It is fortunate that the
automated capability of BONeS allows for this to be carried out quickly and
effortlessly.

3.3.4.1. Topology

The approach is translated into an actual BONeS simulation first through the
construction of a simulation Module using the components developed on Part 1 of this
thesis. The parameters relevant to the simulation are visible in the figure.

 183

 Dynamic WAN [24-Dec-1995 17:39:44]

A A B B C C D D E E

A A B B C C D D E E

A A B B C C D D E E

A A B B C C D D E E

A A B B C C D D E E

Link
17

Link
16

Link
14

Link
15

Link
11

Link
13

Link
12

Link
18

Link
10

Link
23

Link
24

Link
21

Link
20

Link
22

LAN
5

LAN
4

Router
5

Router
3

Router
4

Router
2

Router
1

Traffic
31

Traffic
34

Traffic
33

Traffic
30

Traffic
32

Simulation
Management

M Management Portal
P Filename

P LAN Host: Queue Discipline

P LAN Host: Queue Length
P LAN Router: Queue Discipline

P LAN Router: Queue Length

P WAN Router: Queue Length

P WAN Router: Queue Discipline

P WAN Traffic : Queue Discipline

P WAN Traffic : Queue Length

P WAN Link: Bandwidth

P WAN Link: Propagation Delay

Figure 2-3.7. Simulation Topology: Single TCP Conversation WAN

3.3.4.2. Post Processing and Probe Placement (NOT FINISHED)

ack!

3.3.4.2.1. Basic Simulation

TCP Window Information
For Host 11

To show the detailed attributes of the TCP congestion control algorithm, as it
alters during the course of the simulation. In addition, events that are
correlated with TCP congestion control activity are also captured.

X Axis (Seconds): Time
(Bytes): Congestion Window, Slow Start Threshold, Unacknowledged Data
(No Units): Retransmission Events, Timer Expiries

Probes TCP Probes are used, and they are placed into Host 11’s Transport Layer.

Y Axis

Purpose

 184

TCP Reassembly List Length
For Host 21
Purpose Out of order delivery can be ascertained by looking at the size of the r

assembly list, which holds out of order segments.
X Axis (Seconds): Time
Y Axis (Integer Value): List Length
Probes TCP Probes are used, and they are placed into Host 21’s Transport Layer.

TCP Computed and Actual Round Trip Time (RTT) Information

Host 11
Purpose The RTT plays an important role in TCP congestion control. However, as it is

estimated, observations of the actual RTT should also be made.
(Seconds): Time

Y Axis (Milliseconds): RTT Value, RTT Value +RTT Variance, RTT Value - RTT
Variance, Actual RTT
TCP Probes are placed into Host 11’s Transport Layer. The Actual RTT is
obtained by placing a probe into Host 1’s Transport Layer to extract the timing
information from a received acknowledgement.

For

X Axis

Probes

WAN Router Queue Information
For WAN Routers 1, 2, 3, 4 and 5.

The queue drops packets, and affects the RTT for packets. Its behaviour can
be correlated with that of TCP congestion control.

X Axis
(Integer)
Queue Length, Host Queue Forward Length, Host Reverse Queue Length,
Queue Drops

Probes Queue Probes are placed into each Network Layer through which the
conversation between Host 11 and Host 21 passes. The lenght of the queue is
captured (in total) along with the length attributed to the conversation in each
particular direction.

(Seconds): Time
Y Axis

Purpose

Transport Layer Data Transmission
Host 11

Purpose

(Seconds): Time
Y Axis

TCP Probes are placed into Host 11’s Transport Layer.

For

The qualitative information about a conversation is related to its throughput
and retransmission levels. The number of transmitted and retransmitted bytes
is also affected, and can be correlated with, TCP congestion control activity.

X Axis
(Kilobytes): KB Transmitted, KB Retransmitted

Probes

 185

3.3.4.2.2. Queue Length Iteration

When the queue length is iterated, it is expected that various qualitative aspects of the
TCP conversation will be affected. The graphs will tend to indicate any correlations.

Transport Layer Data Transmission (95% confidence level)

Retransmission Ratio versus. Queue Length
For Host 11
Purpose As the background traffic increases, more retransmissions may occur, due to

the loss of acknowledgements or for other reasons.
X Axis (Integer Value): Queue Length
Y Axis (Integer Value): Retransmission Ratio
Probes The Probes used are those from the Basic Simulation. The retransmission ratio

is constructed for each conversation in each simulation run.

WAN Link Utilisation

Purpose Because of retransmission timeouts and other events, the link may not always
be fully utilised, where under ideal conditions it should always be.

Y Axis (Percentage): Utilisation

For All WAN Links

X Axis (Seconds): Time

Probes Probes are placed into all Links through which the conversation between Host
11 and Host 21 passes in the forward direction (i.e. Host 11 -> Host 21). They
capture the sum of all packet lengths passed through the link over the total
capacity made available by that link according to the length of time in the
simulation.

Throughput versus. Queue Length
For Host 11

The relationship between Queue Length and Throughput tends to indicate a
“good” queue length, and the effects of queuing in general (in a first or second
order manner).

X Axis (Integer Value): Queue Length
(Kilobytes per second): Throughput

Probes The Probes used are those from the Basic Simulation. The graph is constructed
by taking the total number of bytes transmitted for the conversation over the
time of the conversation, for each simulation run.

Y Axis

Purpose

For Host 11
Purpose For greater confidence in the simulation results, a confidence plot using

different initial random seeds is used. The information best used on a
confidence plot is the throughput and retransmit levels, as the assumption is
that they are relevant equivalent for a given scenario. Window and Queue
information is more highly variant, and subject to phase differences.

X Axis (Seconds): Time
Y Axis (Kilobytes): KB Transmitted, KB Retransmitted
Probes TCP Probes are placed into Host 11’s Transport Layer.

 186

3.3.4.2.3. Traffic Level Iteration

Average RTT versus. Queue Length
For

As Queue Length is increased, the RTT should be noticeably different both in
average value and variance.

X Axis
(Milliseconds): Average RTT Value, Average RTT Variance, Average actual
RTT

Probes The Probes used are those from the Basic Simulation. The graph is constructed
by taking the average RTT for the conversation for each simulation run.

 Throughput versus. Traffic Level
For

As the level of background traffic increases, the throughput levels may suffer
due to the share with acknowledgements.

X Axis (Kilobytes per second): Traffic Level
Y Axis (Integer Value): Throughput
Probes The Probes used are those from the Basic Simulation. The RTT ratio is taken

by computing the average RTT for both conversations, and dividing them. The
throughput is taken as the total number of bytes transmitted for the
conversation over the time of the conversation, for each simulation run.

Host 11
Purpose

(Integer Value): Queue Length
Y Axis

Host 11
Purpose

Retransmission Ratio versus. Traffic Level
For Host 11
Purpose As the background traffic increases, more retransmissions may occur, due to

the loss of acknowledgements or for other reasons.
X Axis (Kilobytes per second): Traffic Level
Y Axis (Integer Value): Retransmission Ratio
Probes The Probes used are those from the Basic Simulation. The RTT ratio is taken

by computing the average RTT for both conversations, and dividing them. The
retransmission ratio is constructed for each conversation in each simulation
run.

Average RTT versus Traffic Level

Purpose As the background traffic increases, the average RTT should increase due to
the increased loading for returned acknowledgments

Y Axis (Milliseconds): Average RTT Value, Average RTT Variance, Average actual
RTT

For Host 1

X Axis (Kilobytes per second): Traffic Level

Probes The Probes used are those from the Basic Simulation. The graph is constructed
by taking the average RTT for the conversation for each simulation run.

 187

3.3.4.3. Execution: Basic Simulation

In the basic simulation, the Parameters must be configured using the BONeS Set
Parameters Dialog. One such parameter is the Management Script. There is no
iteration in the basic simulation.

3.3.4.3.1. Parameters

3.3.4.3.2. Management Script

Step 1: Initial configuration at Time 0

0 � Router 1 : Set Route Entry (Addr: Host 41, If: Link 10, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 51, If: Link 11, Cost: 4)
0 � Router 1 : Set Route Entry (Addr: Host 51, If: Link 12, Cost: 3)
0 � Router 1 : Set Route Entry (Addr: Host 51, If: Link 13, Cost: 2)

0 � Router 1 : Set Route Entry (Addr: Traf 32, If: Link 22, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Traf 30, If: Link 11, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Traf 33, If: Link 12, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Traf 34, If: Link 13, Cost: 1)

0 � Router 2 : Set Route Entry (Addr: Host 41, If: Link 11, Cost: 2)
0 � Router 2 : Set Route Entry (Addr: Host 51, If: Link 14, Cost: 3)

The parameters correspond to the values discussed in the Approach.
Parameter Value Description

“multipath.txt” Contains the Management Script..
LAN Host:
Queue Discipline

Drop Tail

The LAN does not play a significant part in the
simulation, this value is not important.

LAN Host:
Queue Length

5 The LAN does not play a significant part in the
simulation, this value is not important

Drop Tail The LAN does not play a significant part in the
simulation, this value is not important.

LAN Router:
Queue Length

5 The LAN does not play a significant part in the
simulation, this value is not important

WAN Router:
Queue Discipline

Drop Random

For the basic case, choose the best.

8 For the basic case, choose a conservative value.

Drop Random

WAN Traffic:
Queue Length

8

64kbps

100ms

WAN Router:
Queue Length
WAN Traffic:
Queue Discipline

For the basic case, choose the best.

For the basic case, choose a conservative value.

WAN Link:
Bandwidth

Models an ISDN B Channel

WAN Link:
Propagation Delay

Models a conservative Propagation Delay.

LAN Router:
Queue Discipline

Filename

The Management Script is broken up into a number of steps according to the outline
given in the Approach. The place at which alterations are made for the Traffic Level
iteration is highlighted in bold.

Set Routing Entries for Router 1 at the WAN.

Set Routing Entries for Router 2 at the WAN.

 188

0 � Router 2 : Set Route Entry (Addr: Traf 30, If: Link 20, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Traf 32, If: Link 11, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Traf 31, If: Link 14, Cost: 1)

0 � Router 3 : Set Route Entry (Addr: Host 41, If: Link 12, Cost: 2)
0 � Router 3 : Set Route Entry (Addr: Host 41, If: Link 15, Cost: 4)
0 � Router 3 : Set Route Entry (Addr: Host 51, If: Link 15, Cost: 3)
0 � Router 3 : Set Route Entry (Addr: Host 51, If: Link 16, Cost: 2)

0 � Router 3 : Set Route Entry (Addr: Traf 33, If: Link 23, Cost: 1)
0 � Router 3 : Set Route Entry (Addr: Traf 32, If: Link 12, Cost: 1)
0 � Router 3 : Set Route Entry (Addr: Traf 31, If: Link 15, Cost: 1)
0 � Router 3 : Set Route Entry (Addr: Traf 34, If: Link 16, Cost: 1)

0 � Router 4 : Set Route Entry (Addr: Host 41, If: Link 14, Cost: 3)
0 � Router 4 : Set Route Entry (Addr: Host 41, If: Link 15, Cost: 3)
0 � Router 4 : Set Route Entry (Addr: Host 51, If: Link 15, Cost: 3)
0 � Router 4 : Set Route Entry (Addr: Host 51, If: Link 17, Cost: 2)

0 � Router 4 : Set Route Entry (Addr: Traf 31, If: Link 21, Cost: 1)
0 � Router 4 : Set Route Entry (Addr: Traf 30, If: Link 14, Cost: 1)
0 � Router 4 : Set Route Entry (Addr: Traf 33, If: Link 15, Cost: 1)
0 � Router 4 : Set Route Entry (Addr: Traf 34, If: Link 17, Cost: 1)

0 � Router 5 : Set Route Entry (Addr: Host 41, If: Link 13, Cost: 2)
0 � Router 5 : Set Route Entry (Addr: Host 41, If: Link 16, Cost: 3)
0 � Router 5 : Set Route Entry (Addr: Host 41, If: Link 17, Cost: 4)
0 � Router 5 : Set Route Entry (Addr: Host 51, If: Link 18, Cost: 1)

0 � Router 5 : Set Route Entry (Addr: Traf 34, If: Link 24, Cost: 1)
0 � Router 5 : Set Route Entry (Addr: Traf 32, If: Link 13, Cost: 1)
0 � Router 5 : Set Route Entry (Addr: Traf 33, If: Link 16, Cost: 1)
0 � Router 5 : Set Route Entry (Addr: Traf 31, If: Link 17, Cost: 1)

0 � Router 40 : Set Route Entry (Addr: Host 41, If: Link 46, Cost: 1)
0 � Router 40 : Set Route Entry (Addr: Host 51, If: Link 10, Cost: 1)

Set Initial Sequence Numbers for Host 41 and Host 51.

Set Routing Entries for Router 3 at the WAN -- Note the configuration for
Router 4 with regard to Link 15; a potential Loop can occur here.

Set Routing Entries for Router 4 at the WAN -- Note the configuration for
Router 3 with regard to Link 15, a potential Loop can occur here.

Set Routing Entries for Router 5 at the WAN.

Set Routing Entries for the Router in LAN 4.

Set Routing Entries for the Router in LAN 5.
0 � Router 50 : Set Route Entry (Addr: Host 51, If: Link 56, Cost: 1)
0 � Router 50 : Set Route Entry (Addr: Host 41, If: Link 18, Cost: 1)

Step 2: Establishment of TCP conversation between Host 41 in LAN 4 and Host 51 in
LAN 5 at Time 0

0 � Host 41 : Set Parameters (ISN: 12345678)
0 � Host 51 : Set Parameters (ISN: 12345678)

Request Host 41 to Connect Session to Host 51, and Host 51 to Connect
Session to Host 41.

0 � Host 41 : Connect Session (Addr: Host 51)
0 � Host 51 : Connect Session (Addr: Host 41)

Instruct the Generator on Host 41 to produce a single Constant unit of data.
0 � Host 41 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

 189

Step 3: Establishment of Jitterisation Traffic at Time 60

Set Address Lists on Traffic 30, 31, 32, 33 and 34.
60 � Host 30 : Set Address List (Num: 2, Addr: 31/32)
60 � Host 31 : Set Address List (Num: 3, Addr: 30/33/34)
60 � Host 32 : Set Address List (Num: 3, Addr: 30/33/34)
60 � Host 33 : Set Address List (Num: 3, Addr: 32/31/34)
60 � Host 34 : Set Address List (Num: 3, Addr: 31/32/33)

Instruct the Generator on Traffic 30, 31, 32, 33 and 34 to produce Poisson
units of data -- these values are equivalent, but under iteration, they all proceed
for 120 seconds.

3.3.4.4. Execution: Queue Length Iteration Simulation

60 � Host 30 : Setup Statistical Generator (Time: 120, Bytes: 0,
Count: 0, Time (Type: POISSON, Lambda: X), Space (Type: CONSTANT,
Value: <ITER>))
60 � Host 31 : Setup Statistical Generator (Time: 120, Bytes: 0,
Count: 0, Time (Type: POISSON, Lambda: X), Space (Type: CONSTANT,
Value: <ITER>))
60 � Host 32 : Setup Statistical Generator (Time: 120, Bytes: 0,
Count: 0, Time (Type: POISSON, Lambda: X), Space (Type: CONSTANT,
Value: <ITER>))
60 � Host 33 : Setup Statistical Generator (Time: 120, Bytes: 0,
Count: 0, Time (Type: POISSON, Lambda: X), Space (Type: CONSTANT,
Value: <ITER>))
60 � Host 34 : Setup Statistical Generator (Time: 120, Bytes: 0,
Count: 0, Time (Type: POISSON, Lambda: X), Space (Type: CONSTANT,
Value: <ITER>))

Step 4: Terminate the simulation at Time 180

Stop.
180 � :

The Management script is constructed by translating these pseudo operations using the
information provided in Part 1. This is not provided here, as it is cryptic and pointless.

The same Parameters and Management script are used as in the Basic Simulation,
however for the WAN Queue Length Parameter a BONeS iteration dialog is selected.
This dialog is instructed to step through the WAN Queue Length from values 1 to 64
inclusive.

3.3.4.5. Execution: Traffic Level Iteration Simulation

The same Parameters are used as in the Basic Simulation, however a number of
Management Scripts are created, to iterate the “Space” Parameter for the Statistical
Generator between 1 and 256.

3.3.5. Expectations (NOT FINISHED)

--summary--

the simulation starts with the tcp covnerstaion between host 21 and host 22. the
behaviour exhibited will be similar to that of previous conversions. there will be a
number of differences. it is expected that there will be an increase in out of order
deliveries, these can be seen through the reassmbly list size. it is also expected that the
round trip times will be larger and more variant due to the multiple paths. in fact, we
should see some defined levels at the path lenghts. we can look at the hop count and

 190

see that packets have taken longer paths through the network. the dynamic routing is
such that packets are placed onto interfaces that have lower loads. what this means is
that the load is distribruted throughout the queeus in a single router. so this means that
for bursty traffic, there is more queue space to accomodate it. we expect to see ack
compresssion occur, it was shown that this results in bursty traffic. generally if the
queue has data in it, the bursty traffic is evened out. it may therefore be evened out by
the front end router, but distributed. during the transient slow start the tcp will attempt
to reach a stable network operating point. previously, we could ocmpute this, but now
it will be harder. the point will be the sum of the paths. but there are other factors. the
ack compression problem will reduce out of order delivery will cause problems. it is
expected to occur. and as a result it is expected to see increased retransmit levels.
these will affect the slow start threshold. they will also impact on the throughput and
retransmission ratio. we want to observe whether the performance is fairly predictable,
or whether it is erratic. we want to observe whether or not the basic congestion control
behaviour is there, we actually are not sure at the moment whether it will or will not
be.

when we look at the increase in quue levels, we sohuld see increase in rtts. the
increased rtts may cause more retranmssions. they may also exacerbate the out of
order delivery problem. we have found that with greater qeueue levels

when we look at the increase in traffic levels. we should see results similar to lower
queue levels. we should also see ackcompression as well, probably more distinct than
it was otherwise.

conclusion; points to the fact that dynamic networks do impact. does tend to show that
current simulations may need to address these types of things

*

--text--

the simulation commences with the TCP conversation between host 21 and host 22. in
general, we expect that the behaviour of the TCP conversation is close to that seen in
the previous simulations. This means that it will iniitally consist of a large slow start
threshold, and with the rapid increase in the congestion window will tend to
congestion the network in a short time. the significant difference in this simulation is
that the network consists of multiple paths between the transmitter and the receiver.

the routing is constructed in such a manner that output interfaces are slected based on
destination address and on the loading levels at the queue. as the window increases, its
data will tend to be distributed throughout the network. because rather than the queue
dropping a packet, it will be sent down other path. in some respects, this is equivalent
to it suffering an additional delay. in previous simulations, we could predict the point
at which congestion occurred by consider the total space available in the network.

for this simulation, the prediction fo the congsetion window is not so easy. firstly, the
window can be expected to be the sum of the paths between the transmitter and
receiver, but there are further complications. the first complication is that
acknowledgements will also be subject to dynamic routing, and therefore
acknowledgement compression will result. as shown in the previous simulation, this
causes a bursty nature in the tcp transmitter, and this bursty nature would tend to

 191

results in earlier congestion -- i.e. congestion wll occur high up in the network. if this
does occur, we will see it through queue drops being more prevalent higher up in the
network.

another added complexity is that with the dynamic routing, we can expect to see out
of order delivery occur. this results from the fact that as packets travel down different
paths, they suffer different delays. with out of order delivery, the level of
retransmissions may increase due to duplicate acknowledgements being
misinterpreted as retransmission timeouts. byt the same token, the the duplicate
acknowledgement and “fast recovery” procedure will reduce the slow start and
congestion windows.

we can determine whether or not out of order delivery is responsible for
retransmissions by looking at the size of the reassembly queue, and whether or not a
sgement was actually dropped in the entwork, or whether ir arrives a short time later.

by now, it is fairly obvious that clear picture of the congestion window is not clear at
the moment.

as the conversation proceeds through the cyclic probing phase of congestion
avoidance, we do expect

xxx

the conversation starts. it goes through the slow start mechanisms. it reaches
congestion. but we don’t know where it reaches congestion. we know that due to the
nature of hte network it will be the sum of all the links.

- we want to see whether or not this increases to a large value, due to drops in the
network, or due to out of order delivery

- then we want to look and see whether or not the dupacks fired the retransmit at the
transmitter

- we should observe some big variations in the rtt for the connection due to the paths

- if we look at this enough, the rtt should tend to exist at defined levels that corespond
with all the link bandwidth delays

- the effect though, will be that we will see the case of ack compression

- we expect that if ack compression occurs, then we should see bursts of packets

- we want to look and see whether or not these bursts can be picked up at the start of
the network

- the impact on the tcp window information is that the rtt variations means things
won’t be nice and linear

- as the connection progresses, the cyclic nature should still be there

- we expect to see that dynamic routing will occur because of the conversation itself

 192

- we can check that this does occur by observing the queue lengths in the networks

- but we can also look at the hop count in received packets

- as for the throughput of the conversation, we expect it to be fairly constant

(queue level iteration)

- we are interested in the case of the iterated queue levels in the network

- what we expect to see is firstly an increase in the rtt through the network

- however, the potential impact of increased rtt is on the level of retransmissions

- and the problems with out of order delivery

- this is expected because the more rtt we have, the more space we have in the
network

- when we consider throughput against rtt, we should see that it actually goes down

- the reason it goes down though is because of the retransmit levels and out of order
delivery

(traffic level iteration)

- the introduction of traffic will increase loading and losses in the network

- it also causes ack compression

- what we are interested in looking is how valid our observations are with other
background traffic

3.3.6. Execution of Simulation

The simulation was not executed due to the problems surrounding the unavailability
of the BONeS software.

3.3.7. Analysis of Results

No results were gathered from the simulation due to the problems surrounding the
unavailability of the BONeS software.

3.3.8. Conclusions (NOT FINISHED)

we wanted to examine the effects of dynamic routing and complex network
topologies. although no simulations were carried out, our expectations point to
decreased levels of performance. the result of these complex networks will tend to be

 193

increased levels of retransmissions due to increased levels of out or order delivery
causing the tcp fast retransmit to inadvertantly fire. the same mechanism will reduce
the slow start threshold and congestion window, further decreasing performance.
providing more queueing the network is not expected to help either, only helping to
increase the incidence of out of order delivery, and increase levels of retransmissions,
whilst decreasing throughput. As there is interchangability between queueing levels,
bandwidth and delay, this tends to indicate that central problems are out of order
delivery and widely variant RTTs. providing traffic in the network, as is expected in a
realistic situation, will only further exacerbate the issue, with subsequent increase in
losses and fall in throughput.

in summary, this environment does provide decreased levels of performance,
especially when considered in light of the previous simulations.

 194

3.4. Multiple TCP conversations overloading long-haul WAN
Link

3.4.1. Problem and Objectives

This scenario concerns itself with the second major issue identified in relation to the
Transmission Control Protocol’s (TCP) congestion control mechanisms as they apply
in Wide-Area Network (WAN) environments.

The concern is based upon the knowledge that increasing traffic levels are being
experienced by central backbone links that interconnect large WANs. Particular
situations can arise that the TCP congestion control mechanisms may not be capable
of servicing due to fundamental limitations.

Central backbone links must support a huge number of conversations, [Ref] reports
that it is usual to see some 400 simultaneous TCP conversations on the main Internet
link between the US and Europe. All of these conversations must share the medium
appropriately, and therefore would tend to receive a small portion of the available
bandwidth and queuing space.

The TCP is a window-based protocol, and when restricted by the congestion window
will send a minimum of two bytes into the network during each Round Trip Time
(RTT), based upon the reception of acknowledgements from its receiver. The implicit
assumption here is that the network is capable of supporting, at a minimum, a two-
byte window for each conversation. On heavily overloaded links, with a large number
of conversations, this assumption can be invalid.

This problem is referred to as the “window-granularity” problem.

Therefore, the objective in this scenario is to examine the window-granularity
problem by generating the suspected conditions, and observing the effects that result.

3.4.2. Discussion and Related Work (NOT FINISHED)

ack!

3.4.3. Approach

The approach consists of identifying the model, simulation and observations that are
required to obtain the objectives.

Model

The model consists of a number of LANs bridged by a single WAN Link. The intent
of the model is to capture a general case where a WAN Link is required to carry many
conversations. Each “side” of the WAN Link has four LANs, of which there are two
Hosts in each.

 195

IS 1 IS 2
D 5

LAN-5

LAN-3

LAN-2

LAN-4

LAN-6

LAN-7

LAN-8

LAN-9

D 10

D 11

D 13

D 12

D 14

D 15

D 16

D 17

LAN-x

Host x2

Host x1

IS x0

D x7

D x6Expanded
View

Figure 2-3.8. Simulation Model: Multiple TCP Conversation L-WAN

Most parameters in the simulation are fixed. The LANs have Links set with
Bandwidth and Propagation Delays corresponding typical Ethernet networks, i.e.
10Mbps and 1ms respectively. The LAN Router queue lengths and disciplines are set
to 16 and Drop Tail respectively; they are not expected to play an operational role in
congestion. Each LAN is connected to a WAN Router through a WAN Link, which
has Bandwidth and Propagation Delay set to 64Kbps and 20ms respectively. This
models a conservative WAN. The WAN Routers request Queue Length and Queue
Discipline parameters, these are set to 8 and Drop Tail respectively, however are
subject to iteration during simulation. The WAN Link is set to have a Bandwidth of
16Kbps and a Propagation Delay of 20ms.

The parameters must be set so that congestion occurs in the WAN Router due to the
WAN Link; at the same time, the WAN Link’s Bandwidth and Propagation Delay are
important as the relationship between them and the TCP conversation is central to the
problem at hand.

Basic Simulation

The basic simulation consists of many TCP conversations established from Hosts in
LAN 2, LAN 3, LAN 4 and LAN 5 to LAN 6, LAN 7, LAN 8 and LAN 9
respectively. The conversation carries one-way traffic (a transfer of a large unit of

 196

data) in the forward direction, however the return traffic consists only of
acknowledgements. These conversations run for 120 seconds.

During this phase, the only phase, of the simulation, a few key characteristics of all
TCP transmitters are of interest. The queue length for the WAN Router for the WAN
Link is where congestion should be seen, and full utilisation of the WAN Link should
also be apparent.

The observations are gained from two sources. The TCP transmitters, all of them,
provide information about their congestion control characteristics and more general
items such as retransmission levels. From these, the case can be seen where the
congestion window lowers and at the same time the level of retransmissions increase.
Other fine-grained TCP information is not particularly important.

The simulation is stopped after 120 seconds.

Variations

There are two variations of concern. The first involves the WAN Router where it is
desired to examine the effects of altered Queue lengths. Therefore, simulations are run
with Queue lengths between 1 and 64 (packets).

The second involves the WAN Link. It is desired to examine the particular overload
problem, as it tends to become worse, for this a reduction in the total space within the
network must be carried out. It is done by iterating on the Bandwidth (we can actually
alter either the Bandwidth or Propagation Delay, there seems to be little difference,
however by altering the Propagation Delay, we are moving more of the queue into the
network, so to speak).

Observations

The WAN Router provides important information about its Queue lengths, and the
extent to which it drops items from the Queue. From this, congestion effects can be
examined.

3.4.4. BONeS Simulation Design

Transfer from an abstract approach into a simulation first requires the construction a
BONeS simulation module. Probes are then placed into this module to capture data
during the simulation, noting that for all runs the same probe configuration is used
(this is done for simplicity). The operation of the Basic Simulation, with details about
Parameters and execution script, is given, after which the modifications are described
for each subsequent iteration.

Every simulation is run with iteration of the “Global Seed” Parameter, at least three
times. This particular aspect is not explicitly outlined because it is carried out so that
visual observation can be made to ensure that results are correct. It is fortunate that the
automated capability of BONeS allows for this to be carried out quickly and
effortlessly.

3.4.4.1. Topology

The approach is translated into an actual BONeS simulation first through the
construction of a simulation Module using the components developed on Part 1 of this
thesis. The parameters relevant to the simulation are visible in the figure.

 197

 Long Haul WAN Link [24-Dec-1995 17:39:19]

A A B B C C D D E E A A B B C C D D E E

Router
1 - A

Router
2 - B

Link
5 Link

13

Link
15

Link
14

Link
12

Link
11

Link
10

LAN
7

LAN
6

LAN
5

LAN
4

LAN
3

LAN
2

Simulation
Management

M Management Portal
P Filename

P Queue Length - A
P Queue Discipline - A

P Queue Length - B
P Queue Discipline - B

P Bandwidth - WAN
P Propagation Delay - WAN

P Bandwidth - Tail
P Propagation Delay - Tail

Figure 2-3.9. Simulation Topology: Multiple TCP Conversation L-WAN

3.4.4.2. Post Processing and Probe Placement

To construct information used in the analysis, Probes can be placed into the
simulation using the BONeS Simulation Manager; once placed, they are then used in
the Post Processor to generate graphs. The approach taken here is to first identify the
particular graphs that indicate critical information for analysis, and then to determine
which Probes must be placed, and where they must be placed.

3.4.4.2.1. Basic Simulation

For the basic simulation, the graphs illustrate the lifecycle activity in the host and the
network.

TCP Window Information
For All Hosts
Purpose Only central TCP congestion window information is required, for all hosts and

as an average.
X Axis (Seconds): Time
Y Axis (Bytes): Congestion Window, Slow Start Threshold, Average Congestion

Window (95% confidence level), Average Slow Start Threshold (95%
confidence level)
(No Units): Retransmission Events, Average Retransmission Events (95%
confidence level)
TCP Probes are used, and they are placed into each Host’s Transport Layer.
The averages are computed from all the values, and a 95% confidence level is
also shown. The averages will potentially only be useful once steady state has
been reached.

Probes

 198

TCP Computed and Actual Round Trip Time (RTT) Information
For All Hosts
Purpose The RTT plays an important role in TCP congestion control. However, as it is

estimated, observations of the actual RTT should also be made.
X Axis (Seconds): Time
Y Axis (Milliseconds): RTT Value, RTT Value +RTT Variance, RTT Value - RTT

Variance, Actual RTT, Average RTT Value (95% confidence level), Average
Actual RTT (95% confidence level)

Probes TCP Probes are placed into each Host’s Transport Layer. The Actual RTT is
obtained by placing a Probe into the Host’s Transport Layer to extract the
timing information from a received acknowledgement. The averages may take
a while to settle.

WAN Router Queue Information
For WAN Router 1
Purpose The WAN Router is the central bottleneck
X Axis (Seconds): Time
Y Axis (Integer Value): Queue Length, Queue Drops
Probes Queue Probes are placed into Wan Router 1’s Network Layer leading to the

WAN Link.

Transport Layer Data Transmission
For All
Purpose The qualitative information about a conversation is related to its throughput

and retransmission levels. The number of transmitted and retransmitted bytes
is also affected, and can be correlated with, TCP congestion control activity.

X Axis (Seconds): Time
Y Axis (Kilobytes): KB Transmitted, KB Retransmitted, Average KB Transmitted

(95% confidence), Average KB Retransmitted (95% confidence).
Probes TCP Probes are placed into each Host’s Transport Layer.

WAN Link Utilisation
WAN Link

Purpose Because of retransmission timeouts and other events, the link may not always
be fully utilised, where under ideal conditions it should always be.

X Axis (Seconds): Time
Y Axis (Percentage): Utilisation
Probes Probes are placed into the WAN Link. They capture the sum of all packet

lengths passed through the link over the total capacity made available by that
link according to the length of time in the simulation.

For

3.4.4.2.2. Queue Length Iteration

When the Queue Length is iterated, the averages obtained through the Basic
Simulation are of interest. Many of these values compute averages of average
information seen in the Basic Simulation.

 199

Average Average Congestion Window versus. Queue Length
For All
Purpose The average congestion window indicates the amount of data that the host

thinks that the network can support.
X Axis (Integer Value): Queue Length
Y Axis (Bytes): Average Average Congestion Window
Probes The Probes used are those from the Basic Simulation. The average of the

Average Congestion window seen is evaluated.

Average Average RTT versus. Queue Length
For All
Purpose As Queue Length is increased, the RTT should be noticeably different both in

average value and variance.
X Axis (Integer Value): Queue Length
Y Axis (Milliseconds): Average Average RTT Value, Average Average RTT

Variance, Average Average Actual RTT
Probes The Probes used are those from the Basic Simulation. The graph is constructed

by taking the average RTT computed for all the conversations for each
simulation run. The average is computed of the Averages from the basic
simulation.

Average Average Throughput versus. Queue Length
For All
Purpose The relationship between Queue Length and Throughput tends to indicate a

“good” queue length, and the effects of queuing in general (in a first or second
order manner).

X Axis (Integer Value): Queue Length
Y Axis (Kilobytes per second): Average Average Throughput
Probes The Probes used are those from the Basic Simulation. The averages are used

from each simulation by taking the average data transmitted over the time for
the simulation.

Average Retransmission Ratio versus. Queue Length
For All
Purpose Queue Lengths and Retransmission Ratios may be correlated. The

retransmission ratio is determined by taking the total number of retransmitted
bytes for a conversation and dividing by the total number of transmitted bytes.

X Axis (Integer Value): Queue Length
Y Axis (Integer): Average Retransmission Ratio
Probes The Probes used are those from the Basic Simulation. The averages are used

from each simulation by taking the average data retransmitted over the time for
the simulation.

3.4.4.2.3. WAN Bandwidth Iteration

 200

As the WAN Bandwidth is altered, the same graphs computed for the Queue Length
iteration are used, however the Bandwidth * Delay Product is used on the X Axis.

3.4.4.3. Execution: Basic Simulation

In the basic simulation, the Parameters must be configured using the BONeS Set
Parameters Dialog. One such parameter is the Management Script. There is no
iteration in the basic simulation.

3.4.4.3.1. Parameters

The parameters correspond to the values discussed in the Approach.
Parameter Value Description
Filename “overload.txt” Contains the Management Script
Router 1:
Queue Discipline

Random Drop The discipline is not strictly important, so choose
the best.

Router 1:
Queue Length

4 Choose an arbitrary value, investigate others in
iterations.

Router 2:
Queue Discipline

Random Drop The discipline is not strictly important, so choose
the best.

Router 2:
Queue Length

4 Choose an arbitrary value, investigate others in
iterations.

WAN Link:
Bandwidth

16kbps The Bandwidth needs to be small, possibly this will
have to be tailored

WAN Link:
Propagation Delay

100ms The Propagation Delay needs to be small, possibly
this will have to be tailored.

Tail Link:
Bandwidth

64kbps Not expressly important, so Module an ISDN B
Channel.

Tail Link:
Propagation Delay

20ms Not expressly important, so choose conservative
value.

3.4.4.3.2. Management Script

The Management Script is broken up into a number of steps according to the outline
given in the Approach.

Step 1: Initial configuration at Time 0

Set Routing Entries for Router 1 at the WAN -- The entries are such that all
Hosts on the left hand side of the WAN Link are visible through specific
Links, whereas all Hosts on the right hand side are visible through the
common WAN Link.

0 � Router 1 : Set Route Entry (Addr: Host 21, If: Link 10, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 22, If: Link 10, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 23, If: Link 10, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 24, If: Link 10, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 31, If: Link 11, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 32, If: Link 11, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 33, If: Link 11, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 34, If: Link 11, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 41, If: Link 12, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 42, If: Link 12, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 43, If: Link 12, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 44, If: Link 12, Cost: 1)

 201

0 � Router 1 : Set Route Entry (Addr: Host 51, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 52, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 53, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 54, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 61, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 62, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 63, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 64, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 71, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 72, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 73, If: Link 5, Cost: 1)
0 � Router 1 : Set Route Entry (Addr: Host 74, If: Link 5, Cost: 1)

Set Routing Entries for Router 2 at the WAN -- The entries are such that all
Hosts on the right hand side of the WAN Link are visible through specific
Links, whereas all Hosts on the left hand side are visible through the common
WAN Link.

0 � Router 2 : Set Route Entry (Addr: Host 51, If: Link 13, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 52, If: Link 13, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 53, If: Link 13, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 54, If: Link 13, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 61, If: Link 14, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 62, If: Link 14, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 63, If: Link 14, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 64, If: Link 14, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 71, If: Link 15, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 72, If: Link 15, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 73, If: Link 15, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 74, If: Link 15, Cost: 1)

0 � Router 2 : Set Route Entry (Addr: Host 21, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 22, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 23, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 24, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 31, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 32, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 33, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 34, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 41, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 42, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 43, If: Link 5, Cost: 1)
0 � Router 2 : Set Route Entry (Addr: Host 44, If: Link 5, Cost: 1)

Set Routing Entries for the Router in LAN 2 -- Hosts in LAN 2 only ever
communicate with Hosts in LAN 5.

0 � Router 20 : Set Route Entry (Addr: Host 21, If: Link 26, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 22, If: Link 27, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 23, If: Link 28, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 24, If: Link 29, Cost: 1)

0 � Router 20 : Set Route Entry (Addr: Host 51, If: Link 10, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 52, If: Link 10, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 53, If: Link 10, Cost: 1)
0 � Router 20 : Set Route Entry (Addr: Host 54, If: Link 10, Cost: 1)

Set Routing Entries for the Router in LAN 3 -- Hosts in LAN 3 only ever
communicate with Hosts in LAN 6.

0 � Router 30 : Set Route Entry (Addr: Host 31, If: Link 36, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Host 32, If: Link 37, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Host 33, If: Link 38, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Host 34, If: Link 39, Cost: 1)

0 � Router 30 : Set Route Entry (Addr: Host 61, If: Link 11, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Host 62, If: Link 11, Cost: 1)

 202

0 � Router 30 : Set Route Entry (Addr: Host 63, If: Link 11, Cost: 1)
0 � Router 30 : Set Route Entry (Addr: Host 64, If: Link 11, Cost: 1)

Set Routing Entries for the Router in LAN 4 -- Hosts in LAN 4 only ever
communicate with Hosts in LAN 7.

0 � Router 40 : Set Route Entry (Addr: Host 41, If: Link 46, Cost: 1)
0 � Router 40 : Set Route Entry (Addr: Host 42, If: Link 47, Cost: 1)
0 � Router 40 : Set Route Entry (Addr: Host 43, If: Link 48, Cost: 1)
0 � Router 40 : Set Route Entry (Addr: Host 44, If: Link 49, Cost: 1)

0 � Router 40 : Set Route Entry (Addr: Host 71, If: Link 12, Cost: 1)
0 � Router 40 : Set Route Entry (Addr: Host 72, If: Link 12, Cost: 1)
0 � Router 40 : Set Route Entry (Addr: Host 73, If: Link 12, Cost: 1)
0 � Router 40 : Set Route Entry (Addr: Host 74, If: Link 12, Cost: 1)

Set Routing Entries for the Router in LAN 5 -- Hosts in LAN 5 only ever
communicate with Hosts in LAN 2.

0 � Router 50 : Set Route Entry (Addr: Host 51, If: Link 56, Cost: 1)
0 � Router 50 : Set Route Entry (Addr: Host 52, If: Link 57, Cost: 1)
0 � Router 50 : Set Route Entry (Addr: Host 53, If: Link 58, Cost: 1)
0 � Router 50 : Set Route Entry (Addr: Host 54, If: Link 59, Cost: 1)

0 � Router 50 : Set Route Entry (Addr: Host 21, If: Link 13, Cost: 1)
0 � Router 50 : Set Route Entry (Addr: Host 22, If: Link 13, Cost: 1)
0 � Router 50 : Set Route Entry (Addr: Host 23, If: Link 13, Cost: 1)
0 � Router 50 : Set Route Entry (Addr: Host 24, If: Link 13, Cost: 1)

Set Routing Entries for the Router in LAN 6 -- Hosts in LAN 6 only ever
communicate with Hosts in LAN 3.

0 � Router 60 : Set Route Entry (Addr: Host 61, If: Link 66, Cost: 1)
0 � Router 60 : Set Route Entry (Addr: Host 62, If: Link 67, Cost: 1)
0 � Router 60 : Set Route Entry (Addr: Host 63, If: Link 68, Cost: 1)
0 � Router 60 : Set Route Entry (Addr: Host 64, If: Link 69, Cost: 1)

0 � Router 60 : Set Route Entry (Addr: Host 31, If: Link 14, Cost: 1)
0 � Router 60 : Set Route Entry (Addr: Host 32, If: Link 14, Cost: 1)
0 � Router 60 : Set Route Entry (Addr: Host 33, If: Link 14, Cost: 1)
0 � Router 60 : Set Route Entry (Addr: Host 34, If: Link 14, Cost: 1)

Set Routing Entries for the Router in LAN 7 -- Hosts in LAN 7 only ever
communicate with Hosts in LAN 4.

0 � Router 70 : Set Route Entry (Addr: Host 71, If: Link 76, Cost: 1)
0 � Router 70 : Set Route Entry (Addr: Host 72, If: Link 77, Cost: 1)
0 � Router 70 : Set Route Entry (Addr: Host 73, If: Link 78, Cost: 1)
0 � Router 70 : Set Route Entry (Addr: Host 74, If: Link 79, Cost: 1)

0 � Router 70 : Set Route Entry (Addr: Host 41, If: Link 15, Cost: 1)
0 � Router 70 : Set Route Entry (Addr: Host 42, If: Link 15, Cost: 1)
0 � Router 70 : Set Route Entry (Addr: Host 43, If: Link 15, Cost: 1)
0 � Router 70 : Set Route Entry (Addr: Host 44, If: Link 15, Cost: 1)

Step 2: Establishment of TCP conversation between Hosts in LAN 2 and Hosts in LAN
5

Set Initial Sequence Numbers for Hosts 21, 22, 23 and 24 and Hosts 51, 52, 53
and 54.

0 � Host 21 : Set Parameters (ISN: 12345678)
0 � Host 51 : Set Parameters (ISN: 12345678)

0 � Host 22 : Set Parameters (ISN: 12345678)
0 � Host 52 : Set Parameters (ISN: 12345678)

0 � Host 23 : Set Parameters (ISN: 12345678)
0 � Host 53 : Set Parameters (ISN: 12345678)

 203

0 � Host 24 : Set Parameters (ISN: 12345678)
0 � Host 54 : Set Parameters (ISN: 12345678)

Request Hosts 21, 22, 23 and 24 to Connect Session to Hosts 51, 52, 53 and 54
(respectively) and Hosts 51, 52, 53 and 54 to Connect Session to Hosts 21, 22,
23 and 24 (respectively).

0 � Host 21 : Connect Session (Addr: Host 51)
0 � Host 51 : Connect Session (Addr: Host 21)

0 � Host 22 : Connect Session (Addr: Host 52)
0 � Host 52 : Connect Session (Addr: Host 22)

0 � Host 23 : Connect Session (Addr: Host 53)
0 � Host 53 : Connect Session (Addr: Host 23)

0 � Host 24 : Connect Session (Addr: Host 54)
0 � Host 54 : Connect Session (Addr: Host 24)

Instruct the Generator on Hosts 21, 22, 23 and 24 to produce a single Constant
unit of data.

0 � Host 21 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 22 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 23 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 24 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

Step 3: Establishment of TCP conversation between Hosts in LAN 3 and Hosts in LAN
6.

Set Initial Sequence Numbers for Hosts 31, 32, 33 and 34 and Hosts 61, 62, 63
and 64.

0 � Host 31 : Set Parameters (ISN: 12345678)
0 � Host 61 : Set Parameters (ISN: 12345678)

0 � Host 32 : Set Parameters (ISN: 12345678)
0 � Host 62 : Set Parameters (ISN: 12345678)

0 � Host 33 : Set Parameters (ISN: 12345678)
0 � Host 63 : Set Parameters (ISN: 12345678)

0 � Host 34 : Set Parameters (ISN: 12345678)
0 � Host 64 : Set Parameters (ISN: 12345678)

Request Hosts 31, 32, 33 and 34 to Connect Session to Hosts 61, 62, 63 and 64
(respectively) and Hosts 61, 62, 63 and 64 to Connect Session to Hosts 31, 32,
33 and 34 (respectively).

0 � Host 31 : Connect Session (Addr: Host 61)
0 � Host 61 : Connect Session (Addr: Host 31)

0 � Host 32 : Connect Session (Addr: Host 62)
0 � Host 62 : Connect Session (Addr: Host 32)

0 � Host 33 : Connect Session (Addr: Host 63)
0 � Host 63 : Connect Session (Addr: Host 33)

 204

0 � Host 34 : Connect Session (Addr: Host 64)
0 � Host 64 : Connect Session (Addr: Host 34)

Instruct the Generator on Hosts 31, 32, 33 and 34 to produce a single Constant
unit of data.

0 � Host 31 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 32 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 33 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 34 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

Step 4: Establishment of TCP conversation between Hosts in LAN 4 and Hosts in LAN
7.

Set Initial Sequence Numbers for Hosts 41, 42, 43 and 44 and Hosts 71, 72, 73
and 74.

0 � Host 41 : Set Parameters (ISN: 12345678)
0 � Host 71 : Set Parameters (ISN: 12345678)

0 � Host 42 : Set Parameters (ISN: 12345678)
0 � Host 72 : Set Parameters (ISN: 12345678)

0 � Host 43 : Set Parameters (ISN: 12345678)
0 � Host 73 : Set Parameters (ISN: 12345678)

0 � Host 44 : Set Parameters (ISN: 12345678)
0 � Host 74 : Set Parameters (ISN: 12345678)

Request Hosts 41, 42, 43 and 44 to Connect Session to Hosts 71, 72, 73 and 74
(respectively) and Hosts 71, 72, 73 and 74 to Connect Session to Hosts 41, 42,
43 and 44 (respectively).

0 � Host 41 : Connect Session (Addr: Host 71)
0 � Host 71 : Connect Session (Addr: Host 41)

0 � Host 42 : Connect Session (Addr: Host 72)
0 � Host 72 : Connect Session (Addr: Host 42)

0 � Host 43 : Connect Session (Addr: Host 73)
0 � Host 73 : Connect Session (Addr: Host 43)

0 � Host 44 : Connect Session (Addr: Host 74)
0 � Host 74 : Connect Session (Addr: Host 44)

Instruct the Generator on Hosts 41, 42, 43 and 44 to produce a single Constant
unit of data.

0 � Host 41 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 42 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

0 � Host 43 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

 205

0 � Host 44 : Setup Statistical Generator (Time: 0, Bytes: 0, Count:
0, Time (Type: CONSTANT, Value: 1), Space(Type: CONSTANT, Value:
10000000))

Step 5: Terminate the simulation at Time 120

Stop.
120 � :

The Management script is constructed by translating these pseudo operations using the
information provided in Part 1. This is not provided here, as it is cryptic and pointless.

3.4.4.4. Execution: Queue Length Iteration Simulation

The same Parameters and Management script are used as in the Basic Simulation,
however for the WAN Queue Length Parameter a BONeS iteration dialog is selected.
This dialog is instructed to step through the WAN Queue Length from values 1 to 64
inclusive.

3.4.4.5. Execution: WAN Link Bandwidth Iteration Simulation

The same Parameters and Management script are used as in the Basic Simulation,
however for the WAN Link Bandwidth Parameter a BONeS iteration dialog is
selected. This dialog is instructed to step through the WAN Link Bandwidth from
values 8kbps to 512kbps in 8kbps steps, inclusive.

3.4.5. Expectations (NOT FINISHED)

simulation commences. 12 tcp conversations establish themselves. they fight for
position in the network. during this slow start stuff, they lose a lot. we don’t really
care about them losing a lot. eventually they reach some kind of steady state. but they
will still be probing the network. if we loo kat the network, there is the wan link, and
the feeders to the wan. the wan link acts as the main resource constraint. the wan
feeders do provide space and therefore do allow for more data to be in the network.
however it is the central wan at which the bottleneck will occur. the wan link and
router can support only 4 segments at any one point in time. 12 conversations must
share these 4 segments. consider that if each conversation hada window size of one,
there would be 12 packets in the network at any one point in time. these would tend to
be fairly evenly spaced out, they can reside in the feeders to or from the wan as well.
<xyz> in any case, as we reduce the amount of space available

When the simulation commences execution, we will see 12 TCP conversations
attempt to establish themselves across across the path between each LAN and the
WAN link. With 12 conversations simultaneously competing for the network
resources that are contained within the WAN Router and the WAN Link, congestion
should occur fairly quickly. Therefore, the initial expectation is that there will be quite
a high level of congestion. This transient isn’t of particular concern, as it is the steady
state behaviour that is of interest here.

Eventually, the conversations will reach some form of equilibrium. In the basic
simulation the WAN Router has a Queue Length of 4, and the WAN Link has a
bandwidth of 16kbps with a propagation delay of 100ms. Although each conversation

 206

passes through an connection before it reaches the WAN Router, this connection will
not act as the bottleneck, though it will introduce delay, and contribute to the total
round trip time of the connection. The bandwidth delay of the WAN is 200 bytes,
which is less than one segment. Therefore, all 12 conversations must share a total of 4
segments through the WAN.

- we can predict that the rtt will be of a certain value

- can predict that the congestion windows and slow start thresholds should be value x.

- the following diagram illustrates the epected window behaviour

- note that the round trip time is bounded

- with the wan acting as the bottleneck, lets look at what happens in the wan feeders

- they contribute a certain amount to the round trip time, but they will never become

 congested

- the wan router queue information should be fully utilised

- we have to consider that packets will come through interspaced, and interleaved

- this means that for the certain rtt, we send packets of this size

- but what happens when we play around with the rtt through alteration of the wan
queue

- if we decrease queueing so that there can be only one packet, then all the
conncetions must share one packet space over

- of more interest is the

- this is the case for a single conversation though

For the moment, we can ignore the queueing space. The 12 conversations start with a
window of 2, and with Transport Layer, Network Layer and Datalink Layer overhead
of 32 bytes in total, each packet transported on the Link is of size 34 bytes. 12 packets
of 34 bytes total 408 bytes, so all packets will fit into the network. It is when the
windows increases from 32 bytes to 64 bytes that congestion occurs (giving rise to 12
packets at 64+32 bytes each, exceeding the total of 800).

With a queue length of 2, not all conversations will be subject to congestion at this
window size, but generally the congestion windows should stay at these low values.
congestion will tend to occur frequently, consider that if the maximum usable window
is about 34 bytes, then windows will potentially average around 15-20 bytes, and
increase by 15-20 bytes before suffering congestion. an increase of 20 bytes would
take 20 round trip times, where each rtt is approximately 800ms (it is dominated bt the
propagation delay in this case), i.e. 16 seconds. We can predict that the congestion
window nad slow start threshold exhibit this behaviour:

 <x>

 207

As an approximation, 25 bytes are sent every 800ms for 16 seconds, upon which the
loss of 30 bytes occurs. So, for a transfer of 500 bytes, 30 bytes are lost, about 6%.
The graphs are shown in the following diagram:

 <x>

These results are more interesting when considered in light of iterations on WAN Link
Propagation Delay. With a lower propagation delay, less bytes are capable of fitting
into the network, therefore the average congestion window and slow start thresholds
are lower, and as a consequence our loss rates are higher. To illustrate this, consider
the propagation delay that is now 300ms. The delay bandwidth is (16kbps/8 * 300ms)
= 600 bytes, so congestion will occur when packets reach a size of 50 bytes.
Removing the 32 byte overhead due to layering, the maximum TCP payload is 18
bytes. Therefore, the windows will potentially average around 9 bytes, and increase by
9 bytes berfore suffering congestion. an increase of 9 bytes would take 9 round trip
times, where each rtt is now approprlately 600ms, i.e. 5 seconds.

As an approximation, 9 bytes are sent every 600ms for 5 seconds, after which a loss of
18 bytes occurs. So, for a transfer of 75 bytes, 18 are lost, about 24%. This illustrates
the potential problem with the overloaded network. As we decrease the propagation
delay, a point will be reached where continual retransmissions occur, corresponding to
the case where congestion potentially occurs on every single transmission. We can
attempt to predict this threshold and the effects.

consider that with 12 conversations, and the transfer of 1 byte per RTT where each
packet has a 32 byte overhead, the delay bandwidth product must be capable of
hodling a total of 396 bytes. If it cannot ...

Upon iteration of the queue length, we tend to expect better results at the expense of
bandwidth.

3.4.6. Execution of Simulation

The simulation was not executed due to the problems surrounding the unavailability
of the BONeS software.

3.4.7. Analysis of Results

No results were gathered from the simulation due to the problems surrounding the
unavailability of the BONeS software.

3.4.8. Conclusions (NOT FINISHED)

our expectations do show that there is cause for concern. although we used a low
number of conversations, the basic principle is that the network is not capable of
supporting data from each window every round trip time. as the network becomes less
capable, the amount of loss increases considerably, as measured by the level of
retransmissions. beyond a given threshold, the losses are substantial and the network
is virtually dominate by retransmissions.

 208

3.5. Fluctuating traffic on TCP conversations through
bottleneck long -haul WAN Link

3.5.1. Problem and Objectives

This scenario concerns itself with the third major issue identified in relation to the
Transmission Control Protocol’s (TCP) congestion control mechanisms as they apply
in Wide-Area Network (WAN) environments.

The concern is based upon the shift in traffic characteristics that are being seen in
WANs. In particular, WAN traffic previously consisted mainly of two types of TCP
conversations: medium to long term sustained transfers, such as bulk data FTP, and
bursty poisson conversations, such as interactive Telnet sessions.

More recently, the emergence and predominance of the World-Wide Web (WWW)
has shifted WAN traffic profiles due to the particular characteristics of the WWW.
The WWW primarily uses a session-based protocol called the Hyper-Text Transfer
Protocol (HTTP). It uses a TCP conversation to make short requests and responses.

The TCP congestion control mechanisms use closed loop feedback received over a
number of Round Trip Times (RTTs). It uses this information to determine network
operating conditions which form the basis of its control algorithm. The short lived
nature of the WWW’s HTTP based conversations is such that the underlying TCP
conversation does not exist for a time long enough to receive sufficient information
from the network, and therefore does not adequately accommodate the network.

Therefore, the objective in these scenarios is to examine the effects of HTTP based
conversations to determine whether or not there is concern about the lack of
congestion control in such conversations.

3.5.2. Approach

The approach consists of identifying the model, simulation and observations that are
required to obtain the objectives.

Model

The same model parameters are used as in the previous simulation.

 209

IS 1 IS 2
D 5

LAN-5

LAN-3

LAN-2

LAN-4

LAN-6

LAN-7

LAN-8

LAN-9

D 10

D 11

D 13

D 12

D 14

D 15

D 16

D 17

LAN-x

Host x2

Host x1

IS x0

D x7

D x6Expanded
View

Figure 2-3.10. Simulation Model: Multiple TCP Conversation F-WAN

Basic Simulation

The basic simulation consists of many conversations of a short nature continually
occurring between the Hosts in LAN 2, LAN 3, LAN 4, LAN 5 and the Hosts in LAN
6, LAN 7, LAN 8, LAN 9 respectively. In addition, there are two conversations that
exist between LAN 2 and LAN 5. These conversations carry one way traffic (a
transfer of a large unit of data) in the forward direction, and the return direction
consists only of acknowledgements. This runs for 120 seconds.

This phase represents the case of two TCP conversations with long lifetimes that
suffer the effects of many short-lived HTTP type conversations. In the investigation,
interest is in the losses and throughputs related to the TCP transmitters, especially the
bursty conversations as their losses will be large in comparison to their data
transferred. The Queue Length for the WAN Routers are captured, to ensure that it
shows that congestion is occurring.

The bursty traffic consists of conversations that are started at random time intervals,
and consist of a short transfer (128 bytes) in one direction, a delay, and a return of a
larger transfer (2048 bytes) in the return direction. This is an attempt to model HTTP
traffic, as it consists of a simple request, and the return of a “page” of information.

The simulation is stopped after 120 seconds.

Variations

 210

There are three variations of concern.

The first involves the effects of altered Queue Lengths in the WAN Routers. It is
expected that the bursty nature of the conversations is better accommodated with
larger queues; therefore simulations are run with Queue Lengths between 1 and 64
(packets).

The second involves replacing the HTTP traffic with Telnet traffic, as it is desired to
see whether the effects of either have similar impact upon the network. This occurs by
having the random conversations employ a Telnet profile, rather than use the request
and response mechanism. The Telnet traffic is generated in both directions.

This section was not completed.

This section was not completed.

The third involves repeating the Basic Simulation and the first two variations with
different Queue Disciplines: Random Drop and Random Early Detection.

Observations

The observations are gained from two sources. The TCP transmitters, all of them,
provide information about their congestion control characteristics and more general
items such as retransmission levels. From these, we can gather the extent to which the
transmitter is receiving feedback information from the network.

The WAN Router provides an indication of Queue Lengths, which illustrate
congestion. In particular, the share given to the two sustained transfers is of interest.

3.5.3. BONeS Simulation Design

3.5.3.1. Topology and Parameter Values

3.5.3.2. Runtime Management Script

This section was not completed.

3.5.3.3. Probes and Post Processing

3.5.3.4. Execution

This section was not completed.

3.5.4. Expectations

This section was not completed.

3.5.5. Execution of Simulation

This section was not completed.

3.5.6. Analysis of Results

This section was not completed.

 211

3.5.7. Conclusions

This section was not completed.

 212

CONCLUSIONS

By looking at our objectives, and the work carried out in this thesis, we can make
some interesting conclusions. Unfortunately, the problems that manifested themselves
prevent these conclusions from being more substantial and justifiable in nature.

The BONeS environment was used to carry out the entire process of modelling,
simulating and result processing. The experience with it has been extremely positive,
as it is extremely easy to use, flexible and complete in ability. Its encapsulation of the
entire lifecycle, and automation of simulation and result processing reduce the run-
analyse-debug cycle. Intrinsic support for iteration, and complex manipulation of data
sets in post process allow for fast and comprehensive examination of variations.

There were some minor problems with BONeS, but these tended to be trivial in
nature. The biggest complaint, by far, is the attitude and policy of Comdisco (the
producers of BONeS), which resulted in the fiasco that prevented BONeS from being
usable for significant part of the thesis.

It can be seen in this report that significant effort was put into the construction and
documentation of the BONeS environment. This more than meets the objectives of
providing a flexible, presentable and re-usable environment. The expansion occurred
largely as a result of the inability to carry out other work in thesis, in the attempt to
salvage something of use.

The main concern with modelling and simulation was to examine the effects of
changing WAN environments in relation to TCP congestion control. Through the
construction of simulations and the examination of expected results, it can be
concluded that these new environments do impact upon the performance of TCP
congestion control. These conclusions are based upon the expectations of the
simulations, as the unavailability of BONeS did not allow any actual simulations to be
carried out.

The first two simulations were less important in nature, as they examined behaviour
that is already understood. However, they did allow us to see the operation of TCP
congestion control, and develop the insights in our own particular manner. The
objectives relating to verification and validation of or models based upon the
simulation results were not reached, due to BONeS being unavailable, however the
objective to explain the nature of TCP congestion control was reached. Other work
has not attempted to provide the type of qualitative analysis given here.

The third simulation looked at the effects of increasing WAN size and complexity, in
an attempt to determine the effects of such on TCP congestion control. Although no
simulation was performed, the expectations lead to the belief that these networks do
cause performance problems, most notable due to retransmissions generated through
out of order delivery and variant round trip time estimations.

The fourth simulation was concerned with the increasing traffic levels placed upon
individual WAN connections, and a potential problem that can result due to the low
granularity of the TCP congestion control window. Basically, the network can only
support a transmission rate from each transmitter that is lower than the minimum that
can be provided through TCP congestion control. The expected result is as this

 213

supportable rate decreases, retransmission reach unacceptable levels, causing
significant performance losses. Increasing queuing is expected to alleviate the
situation, as a short-term measure, but a longer-term measure must consider a TCP
congestion control strategy that can transmit at lower rates.

The fifth simulation probes the effects of new traffic classes becoming dominant in
the WAN environment, specifically the case of the HTTP, which uses TCP to carry
out short bursty conversations (in a transaction nature). These conversations do not
exist for long enough to adequately assess and interoperate with the network in terms
of congestion conditions. When coupled with highly utilised WAN connections, the
expected situation is that considerable losses occur. It is also expected that these
results are particular to the HTTP, and not apparent with seemingly similar bursty
traffic, such as Telnet.

In conclusion, this work has not met all of its objectives, due mostly to unforseen
circumstances. However, although it wasn’t possible to run any simulations, issues
have been identified and examined and a framework has been presented allowing for
sufficient assessment of whether the basis for the issues are legitimate. Sufficient
work has been done to allow others to take up the challenge of pressing ahead.

As a final note, it is interesting to consider the nature of the problem that occurred
with the BONeS software. The lesson taught is that if you are carrying out work using
some item of equipment, be it software or otherwise, always ensure that if the item
fails, then there is a means to continue without the loss of significant effort.
Principally, this indicates that the assumptions that seen the most stable, may not be
so, and tends to summarise the nature of the issues in this work.

 214

FUTURE DIRECTIONS

The conclusions reached, and investigation that occurred during this work has led to
some ideas about future directions that could be taken based upon the investigations
here, and the topic in a more general sense.

In the most obvious case, the incomplete investigations could be completed. This
would require the execution and analysis of the simulations, either using the BONeS
environment set up here (which is preferable, given the work that has been put into it)
or in some other manner. The results could then be measured up against the
expectations, and more concrete analysis could be performed.

Thesis 1 mentioned that a potential goal for this work was to perform a comparison of
TCP congestion control using the various algorithms that have been developed. With
the proliferation of many new congestion control algorithms in the last few years, a
comprehensive treatment is even more pressing. Such examination should try to
provide both a theoretical and practical analysis, and look deeper at the underlying
concepts of these algorithms, in terms of control theory and so on. If all models and
simulations in such an examination were equivalent, then it would provide the first
comprehensive examination.

The potential solutions to problems identified in this work should be examined to
determine their success. The two most significant solutions identified in this work are
the alteration of TCP to use a “super slow start window”, in order to alleviate the
“window-granularity problem”; and the use of TCP with Transaction Extensions as a
protocol for HTTP operation. The solutions can be assessed through both simulations
and actual implementation.

The specific characteristics of WANs also need to be looked at further. This would
require more simulations with realistic scenarios, better models of WAN traffic, and
investigations with the new TCP transaction protocol (to assess its interoperability in
existing environments, for the purpose of gauging how successful its deployment
could be). It has been noted [ref] that existing models and simulations have failed to
adequately represent the complex networks and characteristics visible in the current
environment.

Undoubtedly the best direction to take would involve attempting to look at the results
obtained here, both as expectations and through the execution of the simulations, and
attempt to verify these would observations from operating WANs. Although there are
a lot of difficulties in obtaining statistics from operating WANs (politically and
technically), such a task can be achieved, would be a challenge and would validate
issues raised in this work.

At this point in time, the TCP has been in existence for more than 10 years, and Van
Jacobson’s seminal congestion control work is over 6 years old. The last few years
have seen the most rapid changes in WAN architecture and use, with more changes
expected to continue. More than ever, there are many pressing issues to look at, as
these changes challenge strategies developed for a different world.

 215

REFERENCES

Braden, R. (1989). Requirements for Internet hosts -- Communications layers,
Network Working Group Request for Comments RFC 1122, Internet
Engineering Task Force.

Braden, R. (1994). T/TCP - TCP Extensions for Transactions, Functional
Specification, Network Working Group Request for Comments RFC 1644,
Internet Engineering Task Force.

Brakmo, L. S., O'Malley, S. W. and Peterson, L. L. (1994). TCP Vegas: New
techniques for congestion detection and avoidance, Technical report,
Department of Computer Science, University of Arizona, Tucson, AZ.

Brakmo, L. S. and Peterson, L. L. (1995). Performance Problems in BSD4.4 TCP,
Technical report, Department of Computer Science, University of Arizona,
Tucson, AZ.

Cáceres, R., Danzig, P. B., Jamin, S. and Mitzel, D. J. (1991). Characteristics of
Wide-Area TCP/IP Conversations, SIGCOMM Symposium on
Communications Architectures and Protocols, ACM, Zürich, Switzerland,
pp. 101--112. also in Computer Communication Review 21 (4), Sep. (1991).

Comer, D. E. (1991). Internetworking with TCP/IP Vol II: Design, Implementation,
and Internals, Prentice Hall, Englewood Cliffs, NJ.

Berkeley Software Distribution. (1994). The 4.4BSD-Lite release.
ftp://ftp.cdrom.com/pub/bsd-sources/4.4BSD-Lite.tar.gz

Chiu, D.-M. and Jain, R. (1989). Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks, Computer Networks and ISDN
Systems, Vol. 17, pp. 1--14.

Comdisco Systems Inc. (1993). BONeS DESIGNER Users Guide V2.1.

Danzig, P. B., Lin, Z. and Limin, Y. (1995). An Evaluation of TCP Vegas by Live
Emulation., Technical report, Computer Science Department, University of
Southern California, Los Angeles, CA.

 216

end2end-interest, (1988)+. End-to-End interest mailing list, ftp://ftp.isi.edu/end2end.

Floyd, S. (1991a). Connections with multiple congested gateways in packet-switched
networks. Part 1: One-way traffic, Technical report, Lawrence Berkeley
Laboratory.

Floyd, S. (1991b). Connections with multiple congested gateways in packet-switched
networks. Part 2: Two-way traffic, Technical report, Lawrence Berkeley
Laboratory.

Floyd, S. (1994). TCP and Explicit Congestion Notification, Technical report,
Lawrence Berkeley Laboratory.

Floyd, S. (1994). Simulator Tests, Technical report, Lawrence Berkeley Laboratory.

Floyd, S. (1995). TCP and Successive Fast Retransmits, Technical report, Lawrence
Berkeley Laboratory.

Floyd, S. and Jacobson, V. (1992). On traffic phase effects in packet-switched
gateways, Internetworking: Research and Experience 3 (3): 115--156.

Floyd, S. and Jacobson, V. (1993). Random early detection gateways for congestion
avoidance, IEEE/ACM Transactions on Networking 1 (4): 397--413.

Floyd, S. and Paxson, V. (1994). Wide-Area Traffic: The Failure of Poisson
Modeling, Technical report, Lawrence Berkeley Laboratory.

Huynh, L., Chang, R.-F. and Chou, W. (1994). Performance comparison between TCP
slow-start and a new adaptive rate-based congestion avoidance scheme, Proc.
2nd Internationl Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, IEEE, pp. 300--307.

International Organisation for Standardisation. (1984). Basic Reference Model for
Open Systems Interconnection, ISO 7478.

Jacobson, V. (1988). Congestion avoidance and control, ACM Computer
Communication Review 18 (4): 314--329. Proceedings of the Sigcomm '88
Symposium in Stanford, CA, August, (1988).

 217

Jacobson, V. (1990). Modified TCP Congestion Avoidance Algorithm, end2end-
interest mailing list.

Jain, R. (1990). Congestion Control in Computer Networks: Issues and Trends, IEEE
Network Magazine.

Jain, R. and Ramakrishnan, K. K. (1988). Congestion avoidance in computer
networks with a connectionless network layer: Concepts, goals and
methodology, Proc. Computer Networking Symposium, IEEE, pp. 134--143.

Mogul, J. C. (1992). Observing TCP Dynamics in Real Networks, SIGCOMM
Symposium on Communications Architectures and Protocols, ACM,
Baltimore, Maryland, pp. 305--317. Computer Communication Review,
Volume 22, Number 4.

Nagle, J. (1984). Congestion control in IP/TCP internetworks, Request for Comments
RFC 896, Internet Engineering Task Force.

Paxson, V. (1991). Measurements and Models of Wide Area TCP Conversations,
Technical report, Department of Computer Systems Engineering, University
of California, Berkeley, CA.

Nagle, J. (1987). On packet switches with infinite storage, IEEE Transactions on
Communications COM-35 (4): 435--438.

Paxson, V. (1993a). Growth Trends in Wide-Area TCP Connections, Technical
report, Lawrence Berkeley Laboratory.

Paxson, V. (1993b). Empirically-Derived Analytic Models of Wide-Area TCP
Connections: Extended Report, Technical report, Lawrence Berkeley
Laboratory and EECS Division, University of California, Berkeley, CA.

Postel, J. (1981a). Internet Protocol, Network Working Group Request for Comments
RFC 791, Information Sciences Institute, University of Southern California.

Postel, J. (1981b). Internet Control Message Protocol, Network Working Group
Request for Comments RFC 792, Information Sciences Institute, University
of Southern California.

 218

Postel, J. (1981c). Transmission Control Protocol, Network Working Group Request
for Comments RFC 793, Information Sciences Institute, University of
Southern California.

School of EE UTS. (1994). UTS Electrical Engineering Thesis Subjects, A/94 edn.

Stevens, W. R. (1994). TCP/IP Illustrated, Volume 1: The Protocols, Addison-
Wesley.

Postel, J. B. (1982). Simple Mail Transfer Protocol, Network Working Group Request
for Comments RFC 821, Internet Engineering Task Force.

Postel, J. B., Reynolds, J. K. (1985) File Transfer Protocol (FTP), Network Working
Group Request for Comments RFC 959, Internet Engineering Task Force.

Shanmugan, K. S., LaRue, W. W., Klomp, E., McKinley, M., Minden, G. J. and Frost,
V. S. (1988). Block-Oriented Network Simulator (BONeS), Conference
Record, GLOBECOM 88, Vol. 3, IEEE, pp. 1679--1684.

Stallings, W. (1993). Networking Standards : A Guide to OSI, ISDN, LAN and MAN
Standards, Addison-Wesley.

Stevens, W. R. and Wright G. R. (1994). TCP/IP Illustrated, Volume 2: The
Implementation, Addison-Wesley.

Tipper, D., Hammond, J. L., Sharma, S., Khetan, A., Blakrishnan, K. and Menon, S.
(1994). An Analysis of the Congestion Effects of Link Failures in Wide Area
Networks, IEEE Journal on Selected Areas in Communications 12 (1): 179--
192.

Wang, Z. (1992). Routing and Congestion Control in Datagram Networks, PhD
thesis, University College London.

Wang, Z. (??). A dual-window model for flow and congestion control, Technical
report, Dept Computer Science, University College London.

Wang, Z. and Crowcroft, J. (1991). A new congestion control scheme: Slow Start and
Search (Tri-S), Computer Communication Review 21 (1): 32--43.

 219

Wang, Z. and Crowcroft, J. (1992). Eliminating periodic packet losses in the 4.3-
Tahoe BSD TCP congestion control algorithm, ACM Computer
Communication Review 22 (2): 9--16.

Zhang, L., Shenker, S. and Clark, D. D. (1991). Observations on the dynamics of a
congestion control algorithm: the effects of two-way traffic, Sigcomm '91
Conference: Communications Architectures and Protocols, ACM, Zürich,
Switzerland, pp. 133--147.

 220

APPENDIX 1. DETAILED BONES DESIGN

1. DATA STRUCTURES ..A1-2

1.1. Messages... A1-2
1.2. Information Elements ... A1-2
1.3. Miscellaneous ... A1-2

2. PRIMARY MODULES ...A1-3
2.1. Datalink Layer.. A1-3
2.2. Network Layer .. A1-8
2.3. Transport Layer.. A1-25
2.4. Network-Adaption Layer .. A1-53
2.5. Transport-Adaption Layer.. A1-58
2.6. Routing-Module .. A1-64
2.7. Generator.. A1-73
2.8. Management ... A1-81

3. MISCELLANEOUS MODULES ...A1-94
3.1. Statistical Parameter .. A1-94
3.2. Transport Layer -- TCP Probe ... A1-97
3.3. Network Layer -- Queue Probe... A1-101

 A1-1

1. Data Structures

1.1. Messages
Messages are used for communication between Modules and are constructed as
COMPOSITE types. They are structured so that there is a common Message Primitive
from which all Messages are derived, which enhances the type checking capability in
the environment.

The Message Primitive defines two fields: a Length and a Creation Time. The Length
is used to compute a delay for the Message, and the Creation Time to monitor the
lifetime of a Message (e.g. a TCP packet). The Length effectively models the amount
of Data that is present in the Message.

The top level consists of a “Message Primitive”. The next level defines primitives for
each particular Module that has associated Messages: Datalink Layer, Network Layer,
Transport Layer and Management. For example, the “Datalink Message Primitive” for
the Datalink Layer. Within each particular Module, i.e. the next level, Messages are
further partitioned according to function type, e.g. “Connect Primitive” and
“Disconnect Primitive”. At the final level is the particular Message qualified for a
particular function, e.g. “Request” and “Indication”.

“Data” Messages always encapsulate other Messages; whereas Messages for
operational purposes (e.g. “Connect” and “Disconnect”) generally encapsulate
Information Elements.

1.2. Information Elements
Information Elements are used to convey specific units of data between Modules, and
they are generally encapsulated within Messages. The Information Element is
constructed as a COMPOSITE type. They are structured similar to Messages in terms
of layout.

The top level consists of an “Information Element Primitive”. The next level defines
primitives for each particular Module that has associated Information Elements:
Datalink Layer, Network Layer, Transport Layer, Network-Adaption Layer,
Transport-Adaption Layer, Routing-Module, Generator and Management. Within each
particular Module, i.e. the next level, the Information Elements are defined in
whichever manner is appropriate for them.

1.3. Miscellaneous
For simplicity, a Boolean type is constructed as a SET of “True” and “False”, it is
used as an alternative to a less tightly constrained INTEGER.

“Generate Statistical Parameter” requires Data Structures for its operation; this
involves a base COMPOSITE type for a generalised “Statistical Parameter” and
specific Statistical Parameters (e.g. “Constant” and “Exponential”) are constructed as
derivations from this base.

 A1-2

2. Primary Modules

2.1. Datalink Layer

DFD 0: Top

The Top Level DFD shows the Transmission Channels and Management Processor
with specific delineation of data relationships between them, and the upper layer
entities.

1.
Transmission

Channel
A

1.
Transmission

Channel
B

2.
Management

Processor

Bandwidth

State

Propagation
Delay

Status
Indication

Data
Request

Data
Indication

Data
Indication

Status
Indication

Data
Request

Management
Message

Address

Connect /
Disconnect
Indication

Connect /
Disconnect
Indication

(Datalink
Message to A)

(Datalink Message
from A)

(Datalink
Message to B)

(Datalink
Message to A)

(Datalink
Message to B)

(Datalink Message
from B)

 A1-3

DFD 1: Transmission Channel

The Transmission Channel has the task to first Validate Input, thence to Execute
Transmission Delay--involving Indicate Flow Control notification--after which a
Convert Message Type occurs. Although it is possible to indicate both cases of the
Flow Control being Released or Asserted; it is presumed that as soon as a message is
sent, it is Asserted until an explicit Release occurs via this module.

1.1.
Validate Input

1.2.
Execute

Transmission
Delay

1.3.
Indicate

Flow Control
Status

1.4.
Convert

Message
Type

Data
Request

Flow Control
StateValidated

Data
Request

Delayed
Data

Request

Data
Indication

Release
Flow

Control

Bandwidth

State

Propagation
Delay

State

Status
Indication

 A1-4

DFD 2: Management Processor

The Management Processor has a straight forward partitioning. Firstly, the message is
validated in Validate Mgmt Message and Extract IE to ensure that it has the correct
destination address and content, after which the content is processed according its
type. The only specific content processed at this point in time is the Datalink Set State
IE in Process State IE which results in a new State.

2.1.
Validate Mgmt Msg

and Extract IE

2.2.
Process State IE

Set State
IE

State Connect
Indication

Disconnect
Indication

Management
Message Address

Connect/
Disconnect
Indication

PSPEC 1.1: Validate Input

The message is validated before it is processed by using Validate Input. This
validation is only concerned with the State of the Datalink and the Flow Control State
of the Channel. If either of these tests fail, then the message is discarded.

 Inputs:
 State: Boolean
 Flow_Control_State: Boolean
 Data_Req: Datalink Data Request Message
 Outputs:
 Validated_Data_Req: Datalink Data Request Message
 Operation:
 1. IF State = True THEN
 1. IF Flow_Control_State = True THEN
 1. Validated_Data_Req := Data_Req
 2. STOP

 A1-5

PSPEC 1.2: Execute Transmission Delay

The message is delayed in time due to the modelling of transfer across a media, by
using this Execute Transmission Delay. This involves first a delay due to the
transmission of the message, a result of the Bandwidth of the Channel and the
message Length, and then a delay due to the Propagation Delay of the Channel.

 Inputs:
 Validated_Data_Req: Datalink Data Request Message
 State: Boolean
 Bandwidth: Integer
 Propagation_Delay: Real
 Outputs:
 Delayed_Data_Req: Datalink Data Request Message
 Flow_Control_State: Boolean
 Release_Flow_Control: SIGNAL
 Operation:
 1. Flow_Control_State := False
 2. SLEEP (Length (Validated_Data_Req) / Bandwidth)
 3. IF State = True THEN
 1. Flow_Control_State := True
 2. SIGNAL (Release_Flow_Control)
 3. SLEEP (Propagation_Delay)
 4. IF State = True THEN
 1. Delayed_Data_Req := Validated_Data_Req
 4. STOP

PSPEC 1.3: Indicate Flow Control Status

When activated, Indicate Flow Control Status will generate a status message
indicating that flow control is released.

 Inputs:
 Release_Flow_Control: SIGNAL
 Outputs:
 Status_Ind: Datalink Status Indication Message
 Processing:
 1. DECLARE Flow_IE: Datalink Flow Control IE
 2. Flow_IE := ConstructIE_DL_Flow_Control (Released)
 3. Status_Ind := ConstructMsg_DL_Status_Ind (Flow_IE)
 4. STOP

PSPEC 1.4: Convert Message Type

In Convert Message Type, the message must be converted from a request to an
indication, this is done using a pre-constructed data accessor.

 Inputs:
 Delayed_Data_Req: Datalink Data Request Message
 Outputs:
 Data_Ind: Datalink Data Indication Message
 Operation:
 1. Data_Ind := ConvertMsg_DL_Data_Req_To_Ind (Delayed_Data_Req)
 2. STOP

 A1-6

PSPEC 2.1: Validate Mgmt Message and Extract IE

The Management message is inspected to ensure that is destined for this module, and
that the content is valid via Validate Mgmt Message and Extract IE. The appropriate
output is generated depending on the type of content.

 Inputs:
 Mgmt_Msg: Management Set Indication Message
 Address: Integer
 Outputs:
 State_IE: Datalink State IE
 Processing:
 1. DECLARE Unknown_IE: IE
 2. IF Address (Mgmt_Msg) = Address THEN
 1. Unknown_IE := ExtractMsg_Mgmt_Set_Ind (Mgmt_Message)
 2. IF Type (Unknown_IE) = Type (State_IE)
 1. State_IE := Unknown_IE
 3. STOP

PSPEC 2.2: Process State IE

The content of the State IE is processed in Process State IE and used to update
internal state along with generating an indication to upper layers.

 Inputs:
 State_IE: Datalink State IE
 Outputs:
 Connect_Ind: Datalink Connect Indication Message
 Disconnect_Ind: Datalink Disconnect Indication Message
 Processing:
 1. DECLARE New_State: Boolean
 2. New_State := ExtractIE_DL_State (State_IE)
 3. If New_State != State THEN
 1. State := New_State
 2. IF State = True THEN
 1. Connect_Ind := ConstructMsg_DL_Connect_Ind ()
 3. IF State = False THEN
 1. Disconnect_Ind := ConstructMsg_DL_Disconnect_Ind ()
 4. STOP

 A1-7

2.2. Network Layer

 A1-8

DFD 0: Top

The Top Level DFD shows the major top level processing blocks. The inbound
processing is encapsulated within Process Datalink Message and the significant
outbound processing within Process Outgoing Message. Process Load Update,
Process Reject Message and Encapsulate for Datalink are outbound processing
functions but are not placed within the Process Outbound Message because changed
Queue policies should only affect one block, and the processing that is static for all
types of Queue policies should remain outside of this block, otherwise unnecessary
duplication occurs. The End System flag alters behaviour in Process Reject Message
and Encapsulate for Datalink: it is set when the Layer is being used in an End System
situation.

1.
Process
Datalink
Message

3.
Process
Outgoing
Message

4.
Process

Load
Update

2.
Encapsulate

for
Datalink

5.
Process
Reject

Message

Network
Message

Datalink
Message

Start

Stop

Release

Address

Arrived
Data

Message

Outgoing
Data

Message

Datalink
Data

Message

Reject
Data

Message

Load

Network
Status

Message

Network
Data

Message

End System

Network
Message

 A1-9

DFD 1: Process Datalink Message

The Process Datalink Message is responsible for interpreting and acting upon
messages arriving from the Datalink Layer. A Datalink Connect Indication Message
or Datalink Disconnect Indication Message is used to generate a respective Network
Connect Indication Message or Network Disconnect Indication Message for the Upper
Layer. Also, respective Start or Stop triggers are generated for the Outbound
Processing. A Datalink Status Indication Message contains a Flow Control Release
indication that is used to trigger a Release for Outbound Processing. A Datalink Data
Indication Message has the internal Network Data Indication Message removed;
which is then propagated upwards (if certain conditions prevail).

1.1.
Classify
Datalink
Message

1.5.
Process
Status

Message

1.4.
Process

Disconnect
Message

1.3.
Process
Connect
Message

1.2.
Process

Data
Message

Data
Message

Connect
Message

Disconnect
Message

Status
Message

Datalink
Message

Start

Stop

Release

Network
Data

Message

Network
Connect
Message

Next
Disconnect
Message

Address Network
Message

End
System

 A1-10

PSPEC 2: Encapsulate for Datalink

Encapsulate for Datalink has the responsibility of taking an Outgoing Data Message
and placing it within a Datalink Data Message, also ensuring that if this Network
Layer is in an End System, then the source address in the Outgoing Data Message
must be set correctly.

 Inputs:
 Outgoing_Data_Msg: Network Data Request Message
 End_System: Boolean
 Address: Integer
 Outputs:
 Datalink_Data_Msg: Datalink Data Request Message
 Operation:
 1. IF End_System = True THEN
 1. InsertMsg_N_Data_Req (Outgoing_Data_Msg,
 SOURCEADDRESS, Address)
 2. Datalink_Data_Msg :=
 ConstructMsg_DL_Data_Req (Outgoing_Data_Msg)
 3. STOP

 A1-11

DFD 3: Process Outgoing Message

Process Outgoing Message is the core functionality of the Network Layer. When
initialised by Start, Initialise Queue will use the defined Queue Policy and Queue
Length to set up a Queue instance. Any subsequent Arrived Data Messages are placed
into the Queue by Insert Queue, and dropped if they cannot fit. A Release triggers
Release Queue that will either allow the next Outgoing Data Message to be sent, or
indicate that there is no need to Wait for Release on the next arrived one. When Stop
occurs, all items in the Queue are output by Flush Queue as Reject Data Messages.
The Queue itself is constructed as an Abstract Data Type.

3.1.
Initiailise
Queue

3.2.
Flush
Queue

3.3.
Release
Queue

3.5.
Indicate

Load

3.4.
Insert
Queue

Wait For Release

Release

Stop

Start

Load

Arrived
Data

Message

Outgoing
Data

Message

Reject
Data

Message

Outgoing
Data

Message

Update

Queue

Queue Policy

Queue Length

 A1-12

PSPEC 4: Process Load Update

In Process Load Update, a new Load received from the Outgoing Processor is placed
into an appropriate IE which is then transferede in a Network Status Message.

 Inputs:
 Load: Real
 Outputs:
 Network_Status_Msg: Network Status Indication Message
 Operation:
 1. DECLARE Load_IE: Network Load IE
 2. Load_IE := ConstructIE_N_Load (Load)
 3. Network_Status_Msg := ConstructMsg_N_Status_Ind (Load_IE)
 4. STOP

PSPEC 5: Process Reject Message

Process Reject Message must deal with messages that are flushed from the Outgoing
Processor. In the case of an End System, these messages are dropped, but when not in
an End System, they are converted back into Indications and sent as a Network Data
Message for re-routing.

 Inputs:
 Reject_Data_Msg: Network Data Request Message
 End_System: Boolean
 Outputs:
 Network_Data_Msg: Network Data Indication Message
 Operation:
 1. IF End_System = True THEN
 1. Network_Data_Msg :=
 ConvertMsg_N_Data_Req_To_Ind (Reject_Data_Msg)
 2. STOP

PSPEC 1.1: Classify Datalink Message

The message must be classified according to its type so that it can be processed by the
appropriate task. This is done by looking at the type of the message.

 Inputs:
 Datalink_Msg: Message
 Outputs:
 Connect_Msg: Datalink Connect Indication Message
 Disconnect_Msg: Datalink Disconnect Indication Message
 Status_Msg: Datalink Status Indication Message
 Data_Msg: Datalink Data Indication Message
 Operation:
 1. If Type (Connect_Msg) = Type (Datalink_Msg) THEN
 1. Connect_Msg := Datalink_Msg
 2. If Type (Disconnect_Msg) = Type (Datalink_Msg) THEN
 1. Disconnect_Msg := Datalink_Msg
 3. If Type (Status_Msg) = Type (Datalink_Msg) THEN
 1. Status_Msg := Datalink_Msg
 4. If Type (Data_Msg) = Type (Datalink_Msg) THEN
 1. Data_Msg := Datalink_Msg
 5. STOP

 A1-13

PSPEC 1.2: Process Data Message

In Process Data Message, the received Datalink Data Message must have its content
extracted, after which the embedded Network Data Message is extracted and
examined. If we are an End System and the Address corresponds to our Address, then
the message is accepted. If we are not an End System, then the message is always
accepted. An accepted message is translated into an Indication before being sent as a
Network Data Message.

 Inputs:
 Data_Msg: Datalink Data Indication Message
 End_System: Boolean
 Address: Integer
 Outputs:
 Network_Data_Msg: Network Data Indication Message
 Operation:
 1. DECLARE Req_Msg: Network Data Request Message
 2. Req_Msg := ExtractMsg_DL_Data_Ind (Data_Msg)
 3. IF End_System = True THEN
 1. DECLARE Dest_Address: Integer
 2. Dest_Address :=
 ExtractMsg_N_Data_Req (Req_Msg, DESTADDRESS)
 3. IF Dest_Address != Address THEN
 1. STOP
 4. Network_Data_Msg := ConvertMsg_N_Data_Req_To_Ind (Req_Msg)
 5. STOP

PSPEC 1.3: Process Connect Message

In Process Connect Message, the Connect Message will trigger the Start activation for
the Outbound processing, along with the generation of a Network Connect Message
for the Upper Layer.

 Inputs:
 Connect_Msg: Datalink Connect Indication Message
 Outputs:
 Start: SIGNAL
 Network_Connect_Msg: Network Connect Indication Message
 Operation:
 1. SIGNAL Start
 2. Network_Connect_Msg := ConstructMsg_N_Connect_Ind ()
 3. STOP

 A1-14

PSPEC 1.4: Process Disconnect Message

In Process Disconnect Message, the Disconnect Message will trigger the Stop
activation for the Outbound processing, along with the generation of a Network
Disconnect Message for the Upper Layer.

 Inputs:
 Disconnect_Msg: Datalink Disconnect Indication Message
 Outputs:
 Stop: SIGNAL
 Network_Disconnect_Msg: Network Disconnect Indication Message
 Operation:
 1. SIGNAL Stop
 2. Network_Disconnect_Msg := ConstructMsg_N_Disconnect_Ind ()
 3. STOP

PSPEC 1.5: Process Status Message

In Process Status Message, the Status Message will trigger the Release activation for
the Outbound processing only if the extracted content is a released Datalink Flow
Control IE.

 Inputs:
 Status_Msg: Datalink Status Indication Message
 Outputs:
 Release: SIGNAL
 Operation:
 1. DECLARE Flow_IE: Datalink Flow Control IE
 2. DECLARE Flow_State: Boolean
 3. Flow_IE := ExtractMsg_N_Status_Ind (Status_Msg)
 4. Flow_State := ExtractIE_DL_Flow_Control (Flow_IE)
 5. IF Flow_State = False THEN
 1. SIGNAL Release
 6. STOP

PSPEC 3.1: Initialise Queue

When activated, Initialise Queue will create the instance of the Queue ADT using
appropriate configuration (policy and size). The Wait for Release flag is also set.

 Inputs:
 Start: SIGNAL
 Queue_Policy: String
 Queue_Size: Integer
 Outputs:
 Update_Status: SIGNAL
 Wait_For_Release: Boolean
 Queue_Index: Integer
 Operation:
 1. Wait_For_Release := False
 2. Queue_Index := Queue_Create (Queue_Policy, Queue_Size)
 3. SIGNAL Update_Status
 4. STOP

 A1-15

PSPEC 3.2: Flush Queue

Flush Queue is called when the Network Layer has stopped, so that all content from
the queue is extracted and passed out as Reject Data Message. The Wait for Release
and Queue is updated.

 Inputs:
 Stop: SIGNAL
 Queue_Index: Integer
 Outputs:
 Wait_For_Release: Boolean
 Reject_Data_Msg: Network Data Request Message
 Update_Status: SIGNAL
 Operation:
 1. Wait_For_Release := False
 Label_Loop_Next:
 2. IF Queue_Size (Queue_Index) > 0 THEN
 1. Reject_Data_Msg := Queue_Extract (Queue_Index)
 2. __output__
 3. GOTO Label_Loop_Next
 3. Queue_Index := Queue_Destroy (Queue_Index)
 4. SIGNAL Update_Status
 5. STOP

PSPEC 3.3: Release Queue

Release Queue is called when the next item in the Queue can be sent, however it may
be the case that the Queue is empty, so the Wait for Release flag will be set. The
resultant message, if any, is sent as an Outgoing Data Message.

 Inputs:
 Release: SIGNAL
 Queue_Index: Integer
 Outputs:
 Wait_For_Release: Boolean
 Outgoing_Data_Msg: Network Data Request Message
 Update_Status: SIGNAL
 Operation:
 1. IF Queue_Size (Queue_Index) = 0 THEN
 1. Wait_For_Release := False
 2. STOP
 2. Outgoing_Data_Msg := Queue_Extract (Queue_Index)
 3. Wait_For_Release := True
 4. SIGNAL Update_Status
 5. STOP

 A1-16

ADT 3. Queue

Overview

The Queue ADT is provided in order to supply a basic FIFO Queue functionality with
additional support for specific policies relating to the insertion and deletion of items.
There are three main building blocks in the Queue ADT.

1. Queue Primitive Operations -- This consists of a "mini ADT" that only know how
to store and retrieve opaque handles in a queue. These do not know anything about
BONeS or policies, and are purposely constructed to hide complexity--they should
be testable as a generic ADT.

PSPEC 3.4: Insert Queue

Insert Queue is called when an Arrived Data Message must be placed into the Queue.
This action is carried out, and may result in the immediate transmission of an
Outgoing Data Message if the Queue is empty.

 Inputs:
 Arrived_Data_Msg: Network Data Request Message
 Wait_for_Release: Boolean
 Queue_Index: Integer
 Outputs:
 Wait_For_Release: Boolean
 Outgoing_Data_Msg: Network Data Request Message
 Update_Status: SIGNAL
 Operation:
 1. IF Queue_Size (Queue_Index) = Queue_Length (Queue_Index) THEN
 1. STOP
 2. IF Wait_For_Release = False THEN
 1. Outgoing_Data_Msg := Arrived_Data_Msg
 2. Wait_For_Release := True
 3. STOP
 3. Queue_Insert (Queue_Index, Arrived_Data_Msg)
 4. SIGNAL Update_Status
 5. STOP

PSPEC 3.5: Indicate Load

When Indicate Load is called, it will provide a normalised size of the Queue between
0 and 1. It does this by looking at the ratio of the Size to the Length.

 Inputs:
 Update: SIGNAL
 Queue_Index: Integer
 Outputs:
 Load: Real
 Operation:
 1. Load := Queue_Size (Queue_Index) / Queue_Length (Queue_Index)
 2. STOP

 A1-17

2. Queue Context Primitive Operations -- This consists of primitives that know how
to construct, deconstruct and store queue handle instances. These do not know

anything about BONeS or policies except that they retain a copy of the policy type
(i.e. in a database role).

3. BONeS Operations -- This consists of the operations that were designed into the
BONeS modules. These operations use the more primitive operations just
mentioned, and do know how to deal with BONeS specifics.

Input and Output Policies

The Queue ADT is constructed with flexibility in terms of what policies should be
enacted when inserting or extracting message from the queue (we are addressing the
"upper" portion of the queue, that which has knowledge of BONeS). The current
design has three policies for each:

Input Policy.

�� Drop Tail -- When a message is to be inserted that overflows the queue, the
message is discarded. This is an original and very simplistic policy, but has been
shown to have significant problems as the result of much research.

�� Random Drop -- When a message is to be inserted that overflows the queue, a
message is randomly selected from within the queue and dropped. The new
message is then inserted at the end of the queue. This mechanism has shown itself
to be much fairer than Drop Trail, due to several reasons.

�� Random Early Detection (RED) -- Floyd's RED mechanism monitors the average
queue size and randomly discards messages if the size is above some threshold,
even if the queue is not full. This allows transient traffic to still fill up the queue,
but ensures that incipient congestion is indicated before it takes effect. This was
enventually not implemented.

Output Policy.

�� Address Fair Queuing -- A round robin approach is taken to select messages based
on their address. The advantage of this approach is that it inherently strives towards
allowing each address (or, flow) to have equivalent usage of the queue.

�� Size Priority -- On every second extraction, an attempt is made to extract a
message with a length lower than a specified threshold, the purpose of which is to
give precedence to ACKs and as a side effect to lower sized interactive traffic. This
attempts to cope with the ACK compression phenomena. Every second extraction
is required otherwise starvation could occur [still can, to an extent].

�� Class Priority -- IPv6 and other network protocols often include a class
specification that can be used by intermediate systems in processing. This means
that some classes, say interactive traffic, are given precedence over other classes,
long transfers. In this case, every extraction attempts to locate the highest priority
class. Starvation can occur in this scenario.

 A1-18

These policies are specified with the creation of an instance of the Queue, and
subsequent "Insert" and "Extract" operations will use these disciplines.

Operations

Queue Primitive Operations.

Name Inputs Output
s

Description

_Queue_Create Length Queue A Queue ADT is created with room
for "Length" entries, and returned as
the "Queue" handle.

_Queue_Destroy Queue Queue The Queue ADT corresponding to the
"Queue" handle is destroyed. Any
entries still in the "Queue" are
destroyed.

_Queue_Insert Queue,
Elemen
t

Queue,
Result

The "Element" is inserted into the
"Queue" if there is space and a True
"Result" is returned and the "Queue" is
modified. If there is no space, then a
False "Result" is returned and the
"Queue" remains unmodified.

_Queue_Get_Head Queue Queue,
Elemen
t

If there are any entries in the "Queue",
then the very first (FIFO discipline)
"Element" is removed and returned,
otherwise an invalid "Element" is
returned.

_Queue_Get_Eleme
nt

Queue,
Offset

Queue,
Elemen
t

If the size of the "Queue" is less than
the "Offset", then the "Element" at the
"Offset" is removed and returned,
otherwise an invalid "Element" is
returned.

_Queue_Peek_Elem
ent

Queue,
Offset

Queue,
Elemen
t

If the size of the "Queue" is less than
the "Offset", then a copy of the
"Element" at the "Offset" is returned,
otherwise an invalid "Element" is
returned.

_Queue_Get_Size Queue Size The count of "Elements" in the
"Queue" is returned as "Size".

_Queue_Get_Lengt
h

Queue Length The created "Length" of the "Queue" is
returned.

 A1-19

Queue Context Operations.

BONeS Operations.

Name _QueueTable_Alloc (Policy, Length) --> Index

Descr. A free entry in the Queue Table is located. A "Queue" instance is
created using "_Queue_Create" of desired "Length"; this and the
"Policy" is retained in the Table. The "Index" of this entry is
returned.

Pseud
oCode

Index := 0
WHILE _Table[Index].Active = True
 Index := Index + 1
ENDWHILE
_Table[Index].Queue := _Queue_Create (Length)
_Table[Index].Policy := Policy
_Table[Index].Active := True

Name _QueueTable_Free (Index) --> Index

Descr. The entry in the Queue Table corresponding to "Index" is freed and
returned; this is done using "_Queue_Destroy".

Pseud
oCode

IF _Table[Index].Active = True THEN
 _Queue_Destroy (_Table[Index].Queue)
 _Table[Index].Active := False
ENDIF
Index := -1

Name _QueueTable_GetQueue (Index) --> Queue

Descr. The "Queue" handle corresponding to "Index" is returned.

Pseud
oCode

Queue := _Table[Index].Queue

Name _QueueTable_GetPolicy (Index) --> Policy

Descr. The "Policy" information corresponding to "Index" is returned

Pseud
oCode

Policy := _Table[Index].Policy

 A1-20

Name Queue_Create (Policy, Length) --> Index

Descr. Create a "Queue" with specified "Policy" and "Length". A warning
is given if the "Queue" has already been created.

Pseud
oCode

IF _QueueTable_GetQueue (Index) != Null THEN
 ERROR "Queue is already created"
ELSE
 Index := _QueueTable_Alloc (Policy, Length)
ENDIF

Name Queue_Destroy (Index) --> Index

Descr. Destroy a "Queue". A warning is given if the "Queue" has not
already been created.

Pseud
oCode

IF _QueueTable_GetQueue (Index) = Null THEN
 ERROR "Queue has already been destroyed"
ELSE
 Index := _QueueTable_Free (Index)
ENDIF

 A1-21

Name Queue_Insert (Index, Element) --> Boolean

Descr. Attempt to insert a new "Element" into the "Queue" according to the
defined input policy. There are three input policies, Drop Tail, Drop
Random and Random Early Detection (RED).

Pseud
oCode

Queue := _QueueTable_GetQueue (Index)
IF Queue = NULL
 ERROR "Queue not initialised"
ELSE
 Policy := _QueueTable_GetPolicy (Index)

 CASE Policy:

 POLICY_DROP_TAIL:

 IF _Queue_Get_Size (Queue) < _Queue_Get_Length (Queue)
THEN
 _Queue_Insert (Queue, Element)
 Result := True
 ELSE
 Result := False
 ENDIF

 POLICY_DROP_RANDOM:

 IF _Queue_Get_Size (Queue) >= _Queue_Get_Length (Queue)
THEN
 Random := UNIFORM_RANDOM (0, _Queue_Get_Size
(Queue))
 _Queue_Get_Element (Queue, Random)
 ENDIF

 _Queue_Insert (Queue, Element)
 Result := True

 POLICY_RED:

 Result := False

 ENDCASE

ENDIF

 A1-22

Name Queue_Extract (Index) --> Element

Descr. Attempt to extract the next "Element" from the "Queue" according
to the specified policy. This occurs by setting up a filter to indicate
that all entries are valid, then successively removing entries in the
filter according to defined policies. At the end, the first entry of
those remaining will be used, but if none remain then the head of the
queue will be used. The action for the specified filter operations is
as such:

1. _Filter_On_Class -- remove all entries from the filter array other
than those for the highest priority that is present in the array.

2. _Filter_On_Address -- remove all entries from the filter array
other than those for the next address following the previously used
address.

3. _Filter_On_Size -- if this is an even iteration, then remove all
entries from filter array other than those that are equal to the entry
with the smallest size.

Pseud
oCode

Queue := _QueueTable_GetQueue (Index)
IF Queue = Null THEN
 ERROR "Queue not Initialised"
ELSE
 IF _Queue_Get_Size (Queue) = 0 THEN
 Result := False
 ELSE
 Element_Array := Null
 Policy := _QueueTable_GetPolicy (Index)

 IF Policy & POLICY_OUT_ADDRESS THEN
 Element_Array := _Filter_On_Address (Element_Array)
 ENDIF

 IF Policy & POLICY_OUT_SIZE THEN
 Element_Array := _Filter_On_Size (Element_Array)
 ENDIF

 IF Policy & POLICY_OUT_CLASS THEN
 Element_Array := _Filter_On_Class (Element_Array)
 ENDIF

 IF SIZE (Element_Array) = 0 THEN
 Element := _Queue_Get_Head (Queue)
 ELSE
 Element := _Queue_Get_Element (Element_Array[0])
 ENDIF

 Result := True

 ENDIF

ENDIF

 A1-23

Name Queue_Size (Index) --> Size

Descr. Return the size of the "Queue".

Pseud
oCode

Queue := _QueueTable_GetQueue (Index)
IF Queue = Null THEN
 ERROR "Queue not initialised"
ELSE
 Size := _Queue_Get_Size (Queue)
ENDIF

Name Queue_Length (Index) --> Length

Descr. Return the length of the "Queue".

Pseud
oCode

Queue := _QueueTable_GetQueue (Index)
IF Queue = Null THEN
 ERROR "Queue not initialised"
ELSE
 Length := _Queue_Get_Length (Queue)
ENDIF

 A1-24

2.3. Transport Layer

 A1-25

DFD 0: Top

In Top Level DFD, the Transport Message Switch and Network Message Switch
ensure that Data and non-Data Messages are correctly routed. The non-Data
Messages are processed by the Connection Manager and as a result the State of the
current session may be changed, or its Dest Address may be set. The Management
Processor uses the Address to processes a Management Message that may change
Initial Sequence Number. Data Messages pass through either the Transport Interface
or Network Interface. The core work is contained with TCP Processing which
receives Start and Stop notifications from the Connection Manager.

1.
Connection

Manager

4.
Transport
Interface

3.
TCP

Processing

5.
Network
Interface

6.
Transport
Message
Switch

7.
Network
Message
Switch

Transport
non-Data
Message

Network
non-Data
Message

Transport
Message

Network
Message

Network
Data

Message

Data
Request
Message

Data from
TCP

Data to
TCP

Packet to
TCP

Packet
from
TCP

Network
Message

Data
Indication
Message

Dest Address

State

Initial Sequence
Number

2.
Management

Processor

Management
Message

Address

TCP
Action

 A1-26

DFD 1: Connection Manager

The Connection Manager has two divides. The first is the processing of Network non-
Data Messages. These are routed by Classify Network Message as Connect Message,
Disconnect Message or Status Message and respectively processed by Process
Network Connect, Process Network Disconnect or Process Network Status. Transport
non-Data Messages are routed by Classify Transport Message to either Process
Transport Connect or Process Transport Disconnect. Both result in changes to State
and cause Start or Stop activations, respectively. A Dest Address is extracted in
connect processing.

1.1.
Classify
Network
Message

1.5.
Classify

Transport
Message

1.6.
Process

Transport
Connect

1.7.
Process

Transport
Disconnect

1.4.
Process
Network
Status

1.3.
Process
Network

Disconnect

1.2.
Process
Network
Connect

Disconnect
Message

Connect
Message

Connect
Message

Disconnect
Message

Status
Message

Network
non-Data
Message

Transport
non-Data
Message

Stop

State

Dest
Address

State

Start

TCP
Action

 A1-27

DFD 2: Management Processor

The Management Processor has a straight forward partitioning. Firstly, the message is
validated in Validate Mgmt Message and Extract IE to ensure that it has the correct
destination address and content, after which the content is processed according its
type. The only specific content processed at this point in time is the Transport Setup
IE in Process Setup IE -- this results in a change to the Initial Sequence Number.

2.1.
Validate Mgmt Msg

and Extract IE

2.2.
Process
Setup

IE

Setup
IE Initial

Sequence
Number

Management
Message Address

 A1-28

DFD 3: TCP Processing

In TCP Processing, the Start indication is used to activate Start TCP which creates a
TCB with Initial Sequence Number and thence activates the timer. Periodic Timer
Notifies are processed by Process TCP Timer, whilst Data to TCP is dealt with in
Process TCP Outgoing and Packet to TCP in Process TCP Incoming (this may result
in Data from TCP). The three central processing functions may all output Msg Array
from which each Msg is extracted in Transmit TCP Messages as a Packet from TCP.
When Stop is activated, the TCB is destroyed, and the timer is deactivated. Note that
the (TCB) Transmission Control Block is used by all processes but is not connected to
them all to reduce complexity in the diagram. The use of a Msg Array was the result
of an iteration back from implementation.

3.4.
Process

TCP
Outgoing 3.5.

Process
TCP

Incoming

3.3.
Process

TCP
Timers

3.2.
Stop
TCP

3.1.
Start
TCP

3.6.
Transmit

TCP
Messages

Start

Stop

Initial
Sequence
Number

Data to
TCP

Data from
TCP

Msg
Array

Msg
Array

Msg
Array

Packet from
TCP

Packet to
TCP

Timer
Deactivate

Timer
Notify

Timer
Activate

Msg
Array

Transmission
Control
Block

 A1-29

DFD 4: Transport Interface

The Transport Interface is concerned with mapping between Transport Messages and
raw data as processed by the transport protocol. Arriving Data Request Messages are
dealt with in Process Incoming Data which results in Data to TCP. Arriving Data
from TCP is dealt with in Process Outgoing Data and results in a Data Indication
Message. Note that in both cases, the State is used to ensure that the Transport Session
is active before processing occurs.

4.1.
Process
Outgoing

Data

4.2.
Process
Incoming

Data

Data from
TCP

Data to
TCP

Data
Indication
Message

Data
Request
Message

State

State

 A1-30

DFD 5: Network Interface

The Network Interface is concerned with mapping between Network Messages and
internal End-to-End "packets" as used by the transport protocol. Arriving Network
Data Messages are dealt with in Process Incoming Message which results in a Packet
to TCP. An arriving Packet from TCP is dealt with in Process Outgoing Message and
results in a Network Message. Note that in both cases, the State must indicate that the
Transport Session is active, or there will be no processing.

5.1.
Process
Incoming
Message

5.2.
Process
Outgoing
Message

Network
Data

Message Network
Message

Packet to
TCP

Packet from
TCP

State

State

Dest
Address

PSPEC 6: Transport Message Switch

The Transport Message Switch takes Transport Messages and categorises them into
either Transport Data Messages or Transport non-Data Messages.

 Inputs:
 Transport_Msg: Transport Message
 Outputs:
 Transport_Data_Msg: Transport Data Request Message
 Transport_Non_Data_Msg: Transport Message
 Operation:
 1. IF Type (Transport_Msg) = Type (Transport_Data_Msg)
 1. Transport_Data_Msg := Transport_Msg
 2. STOP
 2. Transport_Non_Data_Msg := Transport_Msg
 3. STOP

 A1-31

PSPEC 7: Network Message Switch

The Network Message Switch takes Network Messages and categorises them into
either Network Data Messages or Network non-Data Messages.

 Inputs:
 Network_Msg: Network Message
 Outputs:
 Network_Data_Msg: Network Data Indication Message
 Network_Non_Data_Msg: Network Message
 Operation:
 1. IF Type (Network_Msg) = Type (Network_Data_Msg)
 1. Network_Data_Msg := Network_Msg
 2. STOP
 2. Network_Non_Data_Msg := Network_Msg
 3. STOP

PSPEC 1.1: Classify Network Message

The message must be classified according to its type so that it can be processed by the
appropriate task. This is done by looking at the type of the message.

 Inputs:
 Network_Msg: Message
 Outputs:
 Connect_Msg: Network Connect Indication Message
 Disconnect_Msg: Network Disconnect Indication Message
 Status_Msg: Network Status Indication Message
 Operation:
 1. If Type (Connect_Msg) = Type (Network_Msg) THEN
 1. Connect_Msg := Network_Msg
 2. If Type (Disconnect_Msg) = Type (Network_Msg) THEN
 1. Disconnect_Msg := Network_Msg
 3. If Type (Status_Msg) = Type (Network_Msg) THEN
 1. Status_Msg := Network_Msg
 4. STOP

PSPEC 1.2: Process Network Connect

The message is currently not processed.

 Inputs:
 Connect_Msg: Network Connect Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

 A1-32

PSPEC 1.3: Process Network Disconnect

The message is currently not processed.

 Inputs:
 Disconnect_Msg: Network Disconnect Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

 PSPEC 1.4: Process Network Status

The message is currently not processed.

 Inputs:
 Status_Msg: Network Status Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

PSPEC 1.5: Classify Transport Message

The message must be classified according to its type so that it can be processed by the
appropriate task. This is done by looking at the type of the message.

 Inputs:
 Transport_Msg: Message
 Outputs:
 Connect_Msg: Transport Connect Indication Message
 Disconnect_Msg: Transport Disconnect Indication Message
 Operation:
 1. If Type (Connect_Msg) = Type (Transport_Msg) THEN
 1. Connect_Msg := Transport_Msg
 2. If Type (Disconnect_Msg) = Type (Transport_Msg) THEN
 1. Disconnect_Msg := Transport_Msg
 3. STOP

 A1-33

PSPEC 1.6: Process Transport Connect

The message is used to obtain the Dest Address for the Session, update the known
State of the Session and thence to Start the Session's processing.

 Inputs:
 Connect_Msg: Transport Connect Request Message
 Outputs:
 State: Boolean
 Start: SIGNAL
 Dest_Address: Integer
 Processing:
 1. Dest_Address := ExtractMsg_T_Connect_Req (Connect_Msg)
 2. State := True
 3. SIGNAL Start
 4. STOP

PSPEC 1.7: Process Transport Disconnect

The message is used to update the known State of the Session and thence to Stop the
Session's processing.

 Inputs:
 Disconnect_Msg: Transport Disconnect Request Message
 Outputs:
 State: Boolean
 Stop: SIGNAL
 Processing:
 1. State := False
 2. SIGNAL Stop
 3. STOP

PSPEC 2.1: Validate Mgmt Msg and Extract IE

The Management Message is inspected to ensure that is destined for this module, and
that the content is valid via Validate Mgmt Message and Extract IE. The appropriate
output is generated depending on the type of content.

 Inputs:
 Mgmt_Msg: Management Set Indication Message
 Address: Integer
 Outputs:
 Setup_IE: Transport Setup IE
 Processing:
 1. DECLARE Unknown_IE: IE
 2. IF Address (Mgmt_Msg) = Address THEN
 1. Unknown_IE := ExtractMsg_M_Set_Ind (Mgmt_Msg)
 2. IF Type (Unknown_IE) = Type (Setup_IE)
 1. Setup_IE := Unknown_IE
 3. STOP

 A1-34

PSPEC 2.2: Process Setup IE

The content of the Setup IE is processed in Process Setup IE and used to update the
internal Initial Sequence Number.

 Inputs:
 Setup_IE: Transport Setup IE
 Outputs:
 Initial_Sequence_Number: Integer
 Processing:
 1. Initial_Sequence_Number := ExtractIE_T_Setup (Setup_IE)
 2. STOP

PSPEC 4.1: Process Outgoing Data

Process Outgoing Data is concerned with taking Data from TCP and encapsulating it
within a Data Indication Message, but this will only occur if the State is active.

 Inputs:
 Data_from_TCP: Integer
 State: Boolean
 Outputs:
 Data_Indication_Msg: Transport Data Indication Message
 Processing:
 1. IF State = True THEN
 1. DECLARE Data_Msg: Application Data Message
 2. Data_Msg := ConstructMsg_Applic_Data (Data_from_TCP)
 3. Data_Indication_Msg := ConstructMsg_T_Data_Req (Data_Msg)
 2. STOP

PSPEC 4.2: Process Incoming Data

Process Outgoing Data is concerned with taking a Data Request Message from TCP
and converting it into Data to TCP, but this will only occur if the State is active.

 Inputs:
 Data_Request_Msg: Transport Data Request Message
 State: Boolean
 Outputs:
 Data_to_TCP: Integer
 Processing:
 1. IF State = True THEN
 1. DECLARE Data_Msg: Application Data Message
 2. Data_Msg := ExtractMsg_T_Data_Req (Data_Request_Msg)
 3. Data_to_TCP := ExtractMsg_Applic_Data (Data_Msg)
 2. STOP

 A1-35

PSPEC 5.1: Process Incoming Message

Process Incoming Message is concerned with taking a Network Data Message from
the Network Layer and extracting the Packet to TCP, but this will only occur if the
State is active.

 Inputs:
 Network_Data_Msg: Network Data Indication Message
 State: Boolean
 Outputs:
 Packet_to_TCP: TCP Packet
 Processing:
 1. IF State = True THEN
 1. Packet_to_TCP := ExtractMsg_N_Data_Ind (Network_Data_Msg)
 2. STOP

PSPEC 5.2: Process Outgoing Message

Process Outgoing Message is concerned with taking a Packet from TCP and
constructing a Network Message from it, but this will only occur if the State is active.
The correct Dest Address is also placed into the created message.

 Inputs:
 Packet_from_TCP: TCP Packet
 Dest_Address: Integer
 State: Boolean
 Outputs:
 Network_Msg: Network Data Request Message
 Processing:
 1. IF State = True THEN
 1. Network_Msg :=
 ConstructMsg_N_Data_Req (Dest_Address, Packet_from_TCP)
 2. STOP

PSPEC 3.1: Start TCP

Start TCP activates due to a Transport Session Start indication, and initialises TCP for
processing. This initialisation consists of allocating a Transmission Control Block
using TCP Create and using the Initial Sequence Number to configure the TCB. The
TCP Timer is also activated, it runs every 100ms.

 Inputs:
 Start: SIGNAL
 Initial_Sequence_Number: Integer
 Outputs:
 Timer_Activate: SIGNAL
 TCB_Index: Integer
 Processing:
 1. TCB_Index := TCP_Create (Initial_Sequence_Number)
 2. Timer_Activate := SET_TIMER (100MS)
 3. STOP

 A1-36

PSPEC 3.2: Stop TCP

Stop TCP activates due to a Transport Session Stop indication, and stops TCP
processing. This consists of de-allocating the currently used TCB and shutting down
the TCP Timer.

 Inputs:
 Stop: SIGNAL
 TCB_Index: Integer
 Outputs:
 Timer_Deactivate: SIGNAL
 Processing:
 1. TCB_Index := TCP_Destroy (TCB_Index)
 2. Timer_Deactivate := UNSET_TIMER ()
 3. STOP

PSPEC 3.3: Process TCP Timers

Process TCP Timers is activated by Timer Notify every 100ms. Its purpose is to
execute any scheduled TCP activity (such as delayed acknowledgments,
retransmission timeouts, persist timeouts, etc). It may result in the output of a Msg
Array.

 Inputs:
 Timer_Notify: SIGNAL
 TCB_Index: Integer
 Outputs:
 Msg_Array: ARRAY OF TCP Packet
 Processing:
 1. Msg_Array := TCP_Process_Timer (TCB_Index)
 2. STOP

PSPEC 3.4: Process TCP Outgoing

Process TCP Outgoing is concerned with taking Data to TCP and attempting to
package it for end to end transmission. This may or may not happen immediately due
to internal buffering that may occur, but it is possible for a Msg Array to result as an
output.

 Inputs:
 Data_to_TCP: Integer
 TCB_Index: Integer
 Outputs:
 Msg_Array: ARRAY OF TCP Packet
 Processing:
 1. Msg_Array := TCP_Process_Output (TCB_Index, Data_to_TCP)
 2. STOP

 A1-37

 A1-38

implementations.

MODULE 3. Transmission Control Protocol

Overview

The Transmission Control Protocol (TCP) is moderately complex in design and
implementation. As noted, our model of this protocol takes the ESTABLISHED
processing phase and does not concern itself with the initialisation and termination
processing. Our model is based upon BSD4.4/Net 3. There are a number of reasons
for this:

1. It provides a conceptual and proven architecture to work from.

2. Although it aggregates much functionality, it does have a straightforward
procedural manner and is easy to understand.

3. It contains enhancements beyond the TCP specifications and other

PSPEC 3.5: Process TCP Incoming

Process TCP Incoming must use the Packet to TCP to carry out receiver side TCP
processing. The result of this is possibly Data from TCP to the Upper Layer, or Msg
Array for the transmission of packets back to the peer.

 Inputs:
 Packet_to_TCP: TCP Packet
 TCB_Index: Integer
 Outputs:
 Data_from_TCP: Integer
 Msg_Array: ARRAY OF TCP Packet
 Processing:
 1. (Msg_Array, Data_from_TCP) :=
 TCP_Process_Input (TCB_Index, Packet_to_TCP)
 2. STOP

PSPEC 3.6: Transmit TCP Messages

Due to an implementation concern, the originating messages from TCP processing are
contained within a Msg Array. Each message in this array is extracted and sent via
Transmit TCP Messages -- resulting in a number of Packet from TCP being output.

 Inputs:
 Msg_Array: ARRAY OF TCP Packet
 Outputs:
 Packet_from_TCP: TCP Packet
 Processing:
 1. DECLARE Count: Integer
 2. Count := 0
 Label_Loop_Next:
 3. IF Count < Length (Msg_Array) THEN
 1. Packet_from_TCP := Msg_Array [Count]
 2. __output Packet_from_TCP
 3. Count := Count + 1
 4. GOTO Label_Loop_Next
 4. STOP

4. It is the primary platform used in research circles; therefore it is an appropriate
testbed for comparative and explanatory purposes.

5. It has neatly separated TCP processing from other networking (and, for that matter,
kernel) elements.

6. It ensures that the behaviour we see is actually that of a legitimate TCP
implementation as opposed to something we may have done ourselves.

The design and implementation of our TCP processing was carried out from scratch, it
does not contain anything from BSD4.4/Net 3, however its organisation is strongly
mirrored.

The approach taken here is to construct the TCP protocol as a separable element, and
to then build interface functions to allow it to communicate with BONeS. These
interface functions are described first. From interface to internal, there are three
elements to the core TCP processing: input processing, output processing and timer
processing.

Input processing takes a TCP packet received from a peer TCP entity and carries out a
set of procedures to verify the packet, and then to process specific aspects of it. The
check involves ensuring that the data content of the packet is within our receive
window; and processing involves round-trip-time computation, acknowledgment
processing--including duplicate acknowledgments which trigger fast-retransmits--,
data processing and window updating.

Output processing is concerned with taking data as supplied by the Upper Layer,
checking whether it is possible (due to current conditions) to output a TCP packet, and
then actually doing so. These checks involve examination of both TCP and congestion
windows, outstanding ACKs, silly window conditions, and so on. This output
processing may occur directly as a result of data supplied by the application, or due to
timer and acknowledgment processing.

Timer processing is activated at regular periods and concerns itself with sending
delayed acknowledgments, checking for retransmission timeouts and window probing.
Round-Trip-Time and idle time parameters are also updated. Internally, either input or
timer processing may result in the occurrence of output processing.

The operation of these three main functions requires a database of state information,
referred to as the Transmission Control Block (TCB). It is initialised at the
establishment of a conversation, and removed at termination. In addition, the TCP
packets are defined as data structures that must correlate to those used in BONeS.

The proceeding sections intend to outline the design for the TCP processing. The
design is not specific in giving pseudo-code, as the implementation resulted from
mapping textual description with current BSD4.4/Net3 implementation into a rough,
then refined implementation.

External Interface

Externally, there are six functions that are accessible. With this is a message structure
used for the transfer of data between TCP end points.

 A1-39

Data

 A1-40

Messages

TCP Messages are used to deliver control and data information between TCP peers.
The message structure, in the real world, is well defined. For the purposes of
modelling, we use some fields from the defined message both as they are, and
modified; along with additional fields to aid our simulations. The message contains:

The following fields were left out, for the given reasons:

Name BSD4.4 / Net 3
Name

Description /
Reason for Inclusion

Length null For computation of delivery time, IP
length is used in real

Sequence
Number

th_seq (32 bit) Sequence number for data in the segment

Acknowledgm
ent

th_ack (32 bit) Acknowledgment for previous data
received

Window th_win (16 bit) Current advertised window

Ack Flag th_flags &
TH_ACK

Whether segment does acknowledge
previously recvd

Timestamp
Flag

TF_RCVD_TST
MP

Whether timestamp is present

Recent Time ts_val (32 bit) Value of the time stamp

Time Now ts_ecr (32 bit) Value of the timestamp reply

Name BSD4.4 / Net 3
Name

Description /
Reason for Exclusion

Source Port th_sport (16 bit) We use Addresses for one to one
mapping of associations

Dest Port th_dport (16 bit) As with Source Port

Data Offset th_off (4 bit) Header is always a fixed size

Flags th_flags (8 bit) We only use one flag, the
Acknowledgment, which already has a
field defined

Checksum th_sum (16 bit) Are not concerned with modelling errors

Urgent Offset th_urp (16 bit) We do not model urgent data transfer, as
it can be considered normal data transfer

 Functions

Name TCP_Create (Initial Sequence Number) --> Index

Descr. Create the instance of TCP. This produces an Integer index to be
used in the following TCP functions. The Initial Sequence Number
is used to set up send and receive sequence numbers.

Pseud
o
Code

Index := TCB_Create ()
Tcb := TCB_Lookup (Index)
Init_Process (Tcb, Initial Sequence Number)

Name TCP_Destroy (Index)

Descr. Destroy the instance of TCP.

Pseud
o
Code

TCB_Destroy (Index)

Name TCP_Process_Timer (Index) --> BONeS_TCP_Msg

Descr. Locate the TCB and call timer processing. There may be messages
output from here.

Pseud
o
Code

Tcb := TCB_Lookup (Index)
Timer_Process (Tcb)
Label_Get_Next:
Msg := Get_From_Message_Queue ()
IF Msg != Null THEN
 BONeS_TCP_Msg := Convert_Msg_To_BONeS_Msg (Msg)
 OUTPUT BONeS_TCP_Msg
 GOTO Label_Get_Next
ENDIF

 A1-41

 A1-42

Ack Flag t_flags & Indicates whether Ack needs to be sent

Internal Functionality

The internally functionality consists of two significant aspects. The first being the data
that is used in the functionality, and the second being the procedures used in
processing that data.

Data

Transmission Control Block (TCB)

The Transmission Control Block (TCB) contains all necessary state variables for an
instance of TCP processing. It has the following entries:

Name BSD4.4 / Net3
Name

Description

Delayed Ack
Flag

t_flags &
TF_DELACK

Indicates whether Delayed Ack is
scheduled

Name TCP_Process_Output (Index, Data_Length) --> BONeS_TCP_Msg

Descr. Insert the Data onto the outgoing queue, and then call the output
processing. There may be messages output from here.

Pseud
o
Code

Tcb := TCB_Lookup (Index)
Tcb->Outgoing_Buffer := Tcb->Outgoing_Buffer + Data_Length
Output_Process (Tcb)
Label_Get_Next:
Msg := Get_From_Message_Queue ()
IF Msg != Null THEN
 BONeS_TCP_Msg := Convert_Msg_To_BONeS_Msg (Msg)
 OUTPUT BONeS_TCP_Msg
 GOTO Label_Get_Next
ENDIF

Name TCP_Process_Input (Index, BONeS_TCP_Msg) -->
BONeS_TCP_Msg

Descr. Convert the message into an internal representation, and then call
input processing. There may be messages output from here.

Pseud
o
Code

Tcb := TCB_Lookup (Index)
Msg := Convert_BONeS_Msg_To_Msg (BONeS_TCP_Msg)
Input_Process (Tcb, Msg)
Label_Get_Next:
Msg := Get_From_Message_Queue ()
IF Msg != Null THEN
 BONeS_TCP_Msg := Convert_Msg_To_BONeS_Msg (Msg)
 OUTPUT BONeS_TCP_Msg
 GOTO Label_Get_Next
ENDIF

back to the remote

 A1-43

Send Window

TF_ACKNOW

Persist Timer t_timer &
TCPT_PERSIST

Count down until persist activity should
occur

Retransmit
Timer

t_timer &
TCPT_REXMT

Count down until retransmission is timed
out

Send Window snd_wnd Current send window

Send
Unacknowledg
ed

snd_una First unacknowledged sequence number

Send Next snd_nxt Next sequence number to send

Send Lower
Window

snd_wl1 Lower edge of Send Window

Send Upper
Window

snd_wl2 Upper edge of Send Window

Send Max snd_max Highest sequence number sent

Receive
Window

rcv_wnd Current receive window

Receive Next rcv_nxt Next expected receive sequence number

Send
Congestion
Window

snd_cwnd Current window limitation due to
congestion

Send Slow
Start Threshold

snd_ssthresh Point at which linear window increase
kicks in

Idle t_idle Amount of time that TCP has been idle

Round Trip
Time

t_rtt Currently known/estimated round trip
time

Round Trip
Time Sequence
Number

t_rttseq Sequence number being used for round
trip time estimation

Smoothed
Round Trip
Time

t_srtt Round trip time after being smoothed due
to inherent fluctuation

Round Trip
Time Variance

t_rttvar Variance occurred in round trip time

Round Trip
Time
Minimum

t_rttmin Smallest value of the round trip time seen
so far

Maximum max_sndwnd Maximum send window that occurred

 A1-44

field

Timestamp
Flag

t_flags &
TF_RCVD_TSTM
P

Whether timestamp flags are in effect

Timestamp
Recent

ts_recent Last recent timestamp received

Timestamp
Recent Age

ts_recent_ag
e

When the timestamp was received

Time Now t_now Current virtual clock time; increased
every 500ms

Retransmit
Shift

t_rxtshift Current backoff index for
retransmit/persist

Retransmit
Current

t_rxtcur Current backoff value of
retransmit/persist

Duplicate Acks t_dupacks Count of duplicate Acks that have been
received

Maximum
Segment

t_maxseg The maximum size of a segment that we
can send

Last
Acknowledgm
ent Sent

last_ack_sen
t

The last acknowledgment that we have
sent.

Send Scale snd_scale Scaling used for the Send Window

Receive Scale rcv_scale Scaling used for the Receive Window

Timer Ticks - Used internally to count ticks and
schedule fast or slow timer kicks

Allocated - Whether TCB is in used

Fragment
Queue

seg_next,
seg_prev

List of out of order fragments

The following TCP related state variables are left out, due to the given reasons:

Name BSD4.4 / Net3
Name

Description / Reason for Exclusion

TCP State t_state We only have an ESTABLISHED state in
our model

Force Output t_force We indicate whether forced directly when
calling output processing

Flags t_flags We have explicit flags as opposed to a bit

 A1-45

Queue messages may result; they are queued temporarily until

TCP Template t_template This is only used for performance
reasons, we don’t need a header template

Send Urgent
Pointer

snd_urp We don’t have Urgent Data in our model

Initial Send
Sequence
Number

iss We maintain the Initial Sequence Number
outside of the TCB

Initial Receive
Sequence
Number

irs We maintain the Initial Sequence Number
outside of the TCB

Receive
Urgent Pointer

rcv_urp We don’t have Urgent Data in our model

Out of Band
Data

t_obbflags,
t_iobc,
t_softerror

We don’t model out of band data.

Requested
Scaling

request_r_sc
ale,
requested_s_
scale

We have explicit Window Scaling
available, there is no need to model the
synchronisation

Ancillary Functions

Function Name Description

TCB Create There are no inputs. The function returns an index to a
newly created TCB--that is stored in a global table. With
this index, the TCP can subsequently execute using the
TCB.

TCB Destroy The input is the index of a previously created TCB. The
TCB will then be destroyed, and subsequently the index
becomes invalid and the TCB cannot be used.

TCB Lookup The input is the index of a previously created TCB. The
function will return a handle for the TCB for use in the
TCP processing functions.

Convert
BONeS_Message To
Msg

A BONeS data structure, in its particular representation,
is converted into an internal data structure for use in
TCP processing. This occurs prior to Input processing.

Convert Msg To
BONeS_Message

An internal data structure is converted into a BONeS
data structure. This occurs after TCP processing as
generated messages are given to BONeS.

Add To Message During operation of Output processing, a number of

all processing has been completed. This function will
queue the messages.

Get From Message
Queue

The just mentioned messages are able to be dequeued;
one at a time.

Fragment TCP processing involves maintaining a queue of
incoming fragments that arrive out of order. The
Fragment module stores these and allows for the
extraction of contiguous sections at the head of the
queue. Hence, this module can be considered to provide
the reassembly mechanisms.

TCP Processing Functions

In summary, the three significant processing functions are shown in the following call
graph. Note the case of output processing being called from input and timer
processing. The design is hierarchically and procedurally structured. Each of the three
significant functions along with their respective internal functions are outlined.

Input_Process

Update Receive Window

Duplicate Acks

Check Segment Position

Process Timestamp

Trim Segment Content

Output_Process

Initial Processing

Output_Process

Update Remote

Output_Process

Update Round Trip Time

Process Transmit Timer

Update Congestion

Process Ack

Ack Processing

Window Updating

Data Processing

Fragment Insert

Content Processing

Fragment Extract

Output_Process

Output_Process

Check If Output Needed

Check Forced

Compute Size

Silly Window Syndrome

Window Update

Flags

Check Persist

Send Output

Construct Output Mesg

Send Output Mesg

Update Sequence Nums

First Init

Loop Init

Add To Mesg Queue

Timer_Process

Timer Fast Process

Timer Slow Process

Retransmit Process

Persist Process

Update Backoff

Update Congestion Info

Setup Retransmit Timer

Output_Process

Setup Persist Timer

Output_Process

Output_Process

 A1-46

1. Init_Process

 A1-47

2.1.4. Process
Timestamp

Extract the timestamp and related information from the
segment, but do this only if the timestamp option is

The input to initialisation is the "Initial Sequence Number", and the "TCB". Each item
in the TCB is then initialised to default values; which includes the following: No
Delayed Ack or Ack flags; Timers set to zero; Send and Receive sequence numbers
set to Initial Sequence Number; Send and Receive windows set to maximum;
Congestion window and Slow-Start Threshold set to maximum; Round Trip Time
values reset; Retransmit backoff value reset; Other miscellaneous variables reset.

2. Input_Process

The input here is a "Message" and the "TCB". What occurs is that the "Message" first
has "Initial Processing" (2.1) applied, and then if the "Message" ACK flag is set, will
have "Content Processing" (2.2) applied. It is possible that or subsequent to this,
"Output_Process" (3) will be called to schedule data or acknowledgment output.

Function Name Description

2.1. Initial
Processing

The input stage requires some initial processing, this
takes the form of carrying out several validity checks on
the segment, and possibly tossing away the segment if
any of these fail. The processing that occurs is: a.
"Update Receive Window" -- Recompute the receive
window [this is not affected by the incoming message,
but it only needs to be done for use in input
processing]. b. "Check Segment Position" -- Check the
segment's position in the receive window, as it may
need to be dropped if it lies outside the window. c.
"Trim Segment Content" -- Cut out upper and lower
chunks from the segment if they fall outside the
window, note that this may also cause the entire
segment to be dropped. d. "Process Timestamp" --
Extract the timestamp option from the segment and
update the RTT. Before this, the idle flag is updated to
indicate that the TCP is not idle any more.

2.1.1. Update
Receive Window

Compute the value of the receive window based upon
the current receive sequence numbers.

2.1.2. Check
Segment Position

Check the segments position to see if it overlaps with
the top of what has already been received, then remove
that extraneous data from the segment.

2.1.3. Trim Segment
Content

Check to see how much of the segment lies outside of
the legitimate receive window: throw away partial or all
of the data that overlaps. If the segment is entirely
outside of the receive window, then drop it and send
back an ACK to the peer to indicate so.

enabled, and the segment is a response to the last sent

 A1-48

2.2.1.4. Update
Congestion

Update the congestion window, increase it just a tad but
constrain it to the maximum window that can be sent.

acknowledgment.

2.2. Content
Processing

Process the content of a segment, taking several steps.
These are the things that are done: a. "Ack Processing"
-- Do all the things that occur when a segment is
received with the ACK bit set. b. "Window Updating" -
- Update the receive window based on the segment
content. c. "Data Processing" -- Extract the content of
the segment and do something with it; i.e. send it up to
the upper layer or put it on the reassembly queue.

2.2.1. Ack
Processing

Process lots of things in the input segment relating to
segments when they have ACKs on them. The following
is what is looked at: a. "Duplicate Acks" -- The
reception of duplicate acks is used to fire up the "fast
retransmit" mechanism of TCP that assumes that 3 such
duplicate acks are a sign of lots segments. b. "Update
Remote" -- Check to see how much data is acked, and
more fundamentally, whether or not the ack is within the
window. c. "Update Round Trip Time" -- This ACK
may be coming back from a segment being timed, or
alternatively use what is in the timestamp option. d.
"Update Congestion" -- Must update the congestion
window based on the incoming acks ("Ack clocking").
e. "Process Ack" -- Finally, the ACK is processed so
that transmit buffer content is released and the
appropriate sequence numbers are updated.

2.2.1.1. Duplicate
Acks

This is where duplicate ACKs are processed. Increase
the count of them until a threshold is reached, at which
point scale back the slow start threshold and the
congestion window then fire off TCP output as a guess
that a packet has been dropped (but not picked up by the
retransmit threshold). If more than the threshold of
duplicate ACKs has been received, then pump up the
congestion window by a segment so as to keep the pipe
full : and then kick output processing.

2.2.1.2. Update
Remote

If there are a lot of duplicate ACKs, may need to scale
back the congestion window to the slow start threshold.
Also, drop out here if the ACKs are for data that is
above the window (should never happen ...).

2.2.1.3. Update
Round Trip Time

Update the RTT estimators, taking into account two
cases, the first being where there is a timestamp, so use
this (much more reliable) information to do the RTT.
Otherwise, if the ACK is greater than that which was
sent out to time for this segment, use the estimated RTT.

 A1-49

- certain specific flags; i.e. "ack", may require

2.2.1.5. Process Ack Here, the ACK is actually used to slop out data from the
transmit buffer; look at how much has been ACKed, and
it either covers the whole buffer, or only part thereof.
Note that in TCP, there are no selective acks, which
kind of makes this process easier (at the cost of
performance :-). Having finished updating the buffer,
update the next and unacknowledged sequence number
fields in the TCB.

2.2.2. Process
Window Update

Process for a window update, by looking at the sent
sequence numbers and the updated window. This is
trying to make sure that window updates are only
processed where the update is not an old one!

2.2.3. Process Data Process the data that is in the segment. There are two
cases (only for purposes of optimisation); the first is
where receiving the next segment of data inline and
there is nothing on the queue. For this, the data can be
accepted straight away and passed up to the upper layer.
The second case is where there are existing fragments,
so we stick this into the reassembly queue and
immediately attempt to extract anything that is at the
head of the queue. Next, Setup a delayed ACK flag for
the inline case, and a normal ACK for the other.

3. Output_Process

The complete output processing stage; initially, initialise some variables before we
then loop around attempting to first check for output, and if there is a reason to output,
then generate a segment and send it along with post-update of state.

Function Name Description

3.1. Check If Output
Needed

This is the first half of TCP output processing, which
actually tries to determine whether or not something
should be sent, and if so then establish the basic
parameters (i.e. amount to send and so forth). If any
check is true, then the second half of TCP output
processing is called, if all checks fail then nothing
occurs. The checks are as follows: a. "Check Forced" --
Special conditions that occur if output is being forced. b.
"Compute Size" -- Determine how much data there is to
send, within the constraints of window, buffer and other
sizes. c. "Silly Window Syndrome" -- Check out the
silly window syndrome conditions; these may or may
not inhibit transmission. d. "Window Update" -- If
sending a window update, check for it here. e. "Flags" -

transmission. f. "Check Persist" -- finally, need to

 A1-50

various sequence numbers and the such like are updated.

persist to probe for a window change.

3.1.1. Check Forced Here, do processing that occurs only if forcing an
output; remember the only condition for a forced output
is during a window probe when persisting. So, ensure
that _something_ is being sent, even if it is only a size
of one. Also, the case may be that the window is not
zero, therefore can kill the persist timer.

3.1.2. Compute Size Here, figure out how much data can be sent. Firstly,
compute the initial size as the minimum of the send
buffer and the available window; from which subtract
the amount that has already been sent in this window.
After which; check for a negative length and check to
see whether finished retransmitting. Finally, truncate the
length to the maximum segment size that can be sent,
and make a note to the effect that can come back here to
send more.

3.1.3. Silly Window
Syndrome

Silly Window Syndrome avoidance is carried out both
by the send and receiver; here is the sender side of it.
What occurs is that a set of conditions are checked to
see whether sending a segment is OK. Note that this
only occurs when there is data to send (i.e. not a window
update or ack). The conditions to be checked are: a. Are
sending a maximum sized segment. b. Have been idle
and are depleting the output buffer. c. Are forcing
output. d. Are sending more than half the maximum
segment sent. e. Are retransmitting.

3.1.4. Window
Update

Check to see whether sending a pure window update.
Do so if the advertised window has changed by at least
two maximum segments. Note that in this simulation,
some of this code will never be executed; i.e. it should
always escape to indicate sending. The reason it is left
is to preserve the logical structure and to allow for
future flexibility.

3.1.5. Flags If explicitly sending an acknowledgment, then make
sure that the segment is sent.

3.1.6. Check Persist Here, look at whether or not are in the persist state;
which occurs if the buffer size is greater than zero, and
have failed all the previous output conditions. So, the
persist timer is also setup.

3.2. Send Output The second half of output processing is to actually
construct and send a segment, then to update state
variables in the TCB. This is done in three steps, first
the segment is constructed, then it is sent, and finally the

 A1-51

timing a segment. Also increase TCP's virtual clock.

3.2.1. Construct
Output Message

Construct the output TCP segment by filling in all the
appropriate fields; this includes length, sequence
number, flags, windows and timestamps.

3.2.2. Send Output
Message

The sending is done here, which is to queue up the
segment. All queued messages are released to the
BONeS environment upon completion of the TCP
module.

3.2.3. Update
Sequence Numbers

Having just sent the message, must update the various
sequence numbers such as the maximum sequence
number sent, and that sent but not yet acknowledged.
What is done here is a first check to see whether output
is because are not forced or retransmitting, and then first
update the maximum and next sequence numbers,
setting up an RTT timer (i.e. the RTT timer only occurs
if sending new data, not retransmitting). Make sure
setup for another retransmit too, if currently
retransmitting that is.

3.3. First Init Output processing will iterate if there are a number of
segments to send. So, at the start do some initialising to
set up a few things. Set up the forced output flag, the
idle flag, and if idle then reset the congestion window.

3.4. Loop Init Initialise information for each iteration of trying to send
output, including resetting the iterator flag, and setting
up the window offset, window size and ack flag.

4. Timer_Process

Kick in here on 100ms timer expiries that are generated from BONeS. Thump these
down into 200ms or 500ms expires to correspond with TCP's fast and slow timers,
respectively. The timer handlers ("Timer Fast Process", and "Timer Slow Processing")
are then called if appropriate.

Function Name Description

4.1. Timer Fast
Process

The fast timer is used to schedule delayed acks; so
check to see whether there is a delayed ACK pending,
and if so, then go and pump it out via the output
processing stage.

4.2. Timer Slow
Process

The slow timer is used to schedule retransmits and
persists, so check to see whether either of these

timers have expired and if so, then go off and handle
them. Also, ensure that updates to our idle counter
(which is reset in input processing) and the RTT if

4.2.1. Retransmit
Process

When a retransmit timer expires, first update out
backoff value, schedule another timer event and fix up
the congestion state. After which call output processing
to start pumping data back into the pipe.

4.2.1.1. Update
Backoff

Compute a new backoff value.

4.2.1.2. Setup
Retransmit Timer

Schedule another retransmit timer by computing the
time according to our RTT. Also reset

the send sequence to be the start of our unacknowledged
data, and reset the round trip time because it is not valid
any more.

4.2.1.3. Update
Congestion
Information

Scale down the congestion window, because have lost
data that was in the pipe. Also, reset duplicate ACKs
count.

4.2.2. Persist Process Process the persist timer, this means setup another
persist timer and kick output processing with an
indication to force output.

4.2.2.1. Setup Persist
Timer

Setup the persist timer, do this by looking at the RTT
mean and its variance, and our computed backoff value.
The persist timer is then scheduled and the backoff
increases for the next persist (should it come around).

 A1-52

2.4. Network-Adaption Layer

DFD 0: Top

The Top Level DFD delineates the major processing blocks, showing the data
relationships between them. The State refers to the currently known state of the
Network Layer, and Address List representing the abstraction described above with
Address being the mandatory item for Management.

2.
Management

Processor

Managment
Message

Address List

1.
Process
Network
Message

Network
Message

State

3.
Construct
Outgoing
Message

Data
Length

Output
Data

Request
(to Network
Message)

Address

 A1-53

DFD 1: Process Network Message

The Process Network Message is responsible for interpreting and acting upon
messages arriving from the Network Layer. Only the Network Connect Indication
Message and Network Disconnect Indication Message have any effect here, and are
used to update the known State of the Network Layer. A separate process is defined
for each message.

1.1
Classify
Network
Message

1.2.
Process
Connect
Message

1.3.
Process

Disconnect
Message

1.4.
Process
Status

Message

1.5.
Process

Data
Message

Connect
Message

Disconnect
Message

Status
Message

Data
Message

Network
Message

State

State

 A1-54

DFD 2: Management Processor

The Management Processor has a straight forward partitioning. Firstly, the message is
validated in Validate Mgmt Message and Extract IE to ensure that it has the correct
destination address and content, after which the content is processed according its
type. The only specific content processed at this point in time is the Network-Adaption
Address List IE in Process Address List IE -- this results in a change to the Address
List

2.1.
Validate Mgmt Msg

and Extract IE

2.2.
Process
Address

List
IE

Address
List
IE

Address
List

Management
Message Address

PSPEC 3: Construct Outgoing Message

The given Data Length is used to construct a Network Data Request Message using an
Address randomly selected from the Address List. However, this will only occur if the
State of the Network Layer is True. Note also that the Network Data Request Message
does have a content, but it is an Application Data Message so that if any intermediate
entity decides to interrogate the message, they will find a content that represents an
abstract unit of data only.

 Inputs:
 Data_Length: Integer
 State: Boolean
 Address_List: ARRAY OF Integer
 Outputs:
 Output_Data_Req: Network Data Request Message
 Operation:
 1. DECLARE Address: Integer
 2. DELCARE Number: Integer
 3. DECLARE Data_Msg: Application Data Message
 4. IF State = True THEN
 1. Number := RANDOM_UNIFORM (0, Length (Address_List))
 2. Address := Address_List [Number]
 3. Data_Msg := ConstructMsg_Applic_Data (Data_Length)
 4. Output_Data_Req :=
 ConstructMsg_N_Data_Req (Address, Data_Msg)
 5. STOP

 A1-55

PSPEC 1.1: Classify Network Message

The message must be classified according to its type so that it can be processed by the
appropriate task. This is done by looking at the type of the message.

 Inputs:
 Network_Msg: Message
 Outputs:
 Connect_Msg: Network Connect Indication Message
 Disconnect_Msg: Network Disconnect Indication Message
 Status_Msg: Network Status Indication Message
 Data_Msg: Network Data Indication Message
 Operation:
 1. If Type (Connect_Msg) = Type (Network_Msg) THEN
 1. Connect_Msg := Network_Msg
 2. If Type (Disconnect_Msg) = Type (Network_Msg) THEN
 1. Disconnect_Msg := Network_Msg
 3. If Type (Status_Msg) = Type (Network_Msg) THEN
 1. Status_Msg := Network_Msg
 4. If Type (Data_Msg) = Type (Network_Msg) THEN
 1. Data_Msg := Network_Msg
 5. STOP

PSPEC 1.2: Process Connect Message

The message is used to indicate the current state of the Network Layer.

 Inputs:
 Connect_Msg: Network Connect Indication Message
 Outputs:
 State: Boolean
 Processing:
 1. State := True
 2. STOP

PSPEC 1.3: Process Disconnect Message

The message is used to indicate the current state of the Network Layer.

 Inputs:
 Disconnect_Msg: Network Disconnect Indication Message
 Outputs:
 State: Boolean
 Processing:
 1. State := False
 2. STOP

 A1-56

 A1-57

 2. STOP

PSPEC 1.4: Process Status Message

The message is currently not processed.

 Inputs:
 Status_Msg: Network Status Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

PSPEC 1.5: Process Data Message

The message is currently not processed.

 Inputs:
 Data_Msg: Network Data Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

PSPEC 2.1: Validate Mgmt Message and Extract IE

The Management Message is inspected to ensure that is destined for this module, and
that the content is valid via Validate Mgmt Message and Extract IE. The appropriate
output is generated depending on the type of content.

 Inputs:
 Mgmt_Msg: Management Set Indication Message
 Address: Integer
 Outputs:
 Address_List_IE: Network-Adaption Address List IE
 Processing:
 1. DECLARE Unknown_IE: IE
 2. IF Address (Mgmt_Msg) = Address THEN
 1. Unknown_IE := ExtractMsg_M_Set_Ind (Mgmt_Msg)
 2. IF Type (Unknown_IE) = Type (Address_List_IE)
 1. Address_List_IE := Unknown_IE
 3. STOP

PSPEC 2.2: Process Address List IE

The content of the Address List IE is processed in Process Address List IE and used to
update the internal Address List.

 Inputs:
 Address_List_IE: Network-Adaption Address List IE
 Outputs:
 Address_List : ARRAY OF Integer
 Processing:
 1. Address_List := ExtractIE_NA_Address_List (Address_List_IE)

2.5. Transport-Adaption Layer

DFD 0: Top

The architectural delineation can be seen in the Top Level DFD. The only data store
here is the Address, being the mandatory item for Management.

2.
Management

Processor

Management
Message

1.
Process

Transport
Message

Transport
Message

3.
Construct
Transport

Data
Message

Data
Length

Transport
Data

Message
(to Transport

Message)

Address

Transport
Connect /

Disconnect
Message

(to Transport
Message)

 A1-58

DFD 1: Process Transport Message

The Process Transport Message is responsible for interpreting and acting upon
messages arriving from the Transport Layer. Processes are provided for Transport
Connect Indication, Transport Disconnect Indication and Transport Data Indication
Messages.

1.1.
Classify

Transport
Message

1.2.
Process
Connect
Message

1.3.
Process

Disconnect
Message

1.4.
Process

Data
Message

Connect
Message

Disconnect
Message

Data
Message

Transport
Message

 A1-59

DFD 2: Management Processor

The Management Processor has a straight forward partitioning. Firstly, the message is
validated in Validate Mgmt Message and Extract IE to ensure that it has the correct
destination address and content, after which the content is processed according its
type. There are two specific IEs that are acted upon, that being the Transport-
Adaption Connect IE and the Transport-Adaption Disconnect IE. These result in the
generation of Transport Connect Request and Transport Disconnect Request
Messages, respectively.

2.1.
Validate Mgmt Msg

and Extract IE

2.2.
Process
Connect

IE

Connect
IE

Connect
Request
Message

(to Transport
Message)

Management
Message Address

2.3.
Process

Disconnect
IE

Disconnect
IE

Disconnect
Request
Message

(to Transport
Message)

 A1-60

PSPEC 3: Construct Outgoing Message

The given Data Length is used to construct a Transport Data Request Message. Note
that the Transport Data Request Message does have a content, but it is an Application
Data Message so that if any intermediate entity decides to interrogate the message,
they will find a content that represents an abstract unit of data only.

 Inputs:
 Data_Length: Integer
 Outputs:
 Output_Data_Req: Transport Data Request Message
 Operation:
 1. DECLARE Data_Msg: Application Data Message
 2. Data_Msg := ConstructMsg_Applic_Data (Data_Length)
 3. Output_Data_Req := ConstructMsg_T_Data_Req (Data_Msg)
 4. STOP

PSPEC 1.1: Classify Transport Message

The message must be classified according to its type so that it can be processed by the
appropriate task. This is done by looking at the type of the message.

 Inputs:
 Transport_Msg: Message
 Outputs:
 Connect_Msg: Transport Connect Indication Message
 Disconnect_Msg: Transport Disconnect Indication Message
 Data_Msg: Transport Data Indication Message
 Operation:
 1. If Type (Connect_Msg) = Type (Transport_Msg) THEN
 1. Connect_Msg := Transport_Msg
 2. If Type (Disconnect_Msg) = Type (Transport_Msg) THEN
 1. Disconnect_Msg := Transport_Msg
 3. If Type (Data_Msg) = Type (Transport_Msg) THEN
 1. Data_Msg := Transport_Msg
 4. STOP

PSPEC 1.2: Process Connect Message

The message is currently not processed.

 Inputs:
 Connect_Msg: Transport Connect Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

 A1-61

PSPEC 1.3: Process Disconnect Message

The message is currently not processed.

 Inputs:
 Disconnect_Msg: Transport Disconnect Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

PSPEC 1.4: Process Data Message

The message is currently not processed.

 Inputs:
 Data_Msg: Transport Data Indication Message
 Outputs:
 n/a
 Processing:
 1. STOP

PSPEC 2.1: Validate Mgmt Message and Extract IE

The Management Message is inspected to ensure that is destined for this module, and
that the content is valid via Validate Mgmt Message and Extract IE. The appropriate
output is generated depending on the type of content.

 Inputs:
 Mgmt_Msg: Management Set Indication Message
 Address: Integer
 Outputs:
 Connect_IE: Transport-Adaption Connect IE
 Disconnect_IE: Transport-Adaption Disconnect IE
 Processing:
 1. DECLARE Unknown_IE: IE
 2. IF Address (Mgmt_Msg) = Address THEN
 1. Unknown_IE := ExtractMsg_M_Set_Ind (Mgmt_Msg)
 2. IF Type (Unknown_IE) = Type (Connect_IE)
 1. Connect_IE := Unknown_IE
 3. IF Type (Unknown_IE) = Type (Disconnect_IE)
 1. Disconnect_IE := Unknown_IE
 3. STOP

 A1-62

PSPEC 2.2: Process Connect IE

The content of the Connect IE is processed in Process Connect IE, which generates a
Transport Connect Request Message.

 Inputs:
 Connect_IE: Transport-Adaption Connect IE
 Outputs:
 Connect_Msg: Transport Connect Request Message
 Processing:
 1. DECLARE Address: Integer
 2. Address := ExtractIE_TA_Connect (Connect_IE)
 3. Connect_Msg := ConstructMsg_T_Connect_Req (Address)
 4. STOP

PSPEC 2.2: Process Disconnect IE

The content of the Disconnect IE is processed in Process Disconnect IE, which
generates a Transport Disconnect Request Message.

 Inputs:
 Disconnect_IE: Transport-Adaption Disconnect IE
 Outputs:
 Disconnect_Msg: Transport Disconnect Request Message
 Processing:
 1. Disconnect_Msg := ConstructMsg_T_Disconnect_Req ()
 2. STOP

 A1-63

2.6. Routing-Module

DFD 0: Top

In the Top Level DFD, the Management Processor uses the module's Address and
updates Routing Table Entries. These are read by the Routing Processor, which uses
the Interface State and Interface Load updated by each Network Layer Interface. The
Interface Message Switch will switch a message to a specific interface. The "<X>"
qualification indicates that there are multiple instances item; and a process must
supply the qualifier for the specific instance.

2.
Management

Processor

1.
Routing

Processor

4.
Network

Layer
Interface

<X>

3.
Interface
Message
Switch

Interface State
<X>

Interface Load
<X>

Interface Number

Routing Table
EntryManagment

Message

Interface
Data

Message

Interface
Data

Message
<X>

Network
Data

Request
Message

<X>

Network
Message

<X>

Router
Data

Mesage

NETWORK INTERFACE
NUMBER <X>

Address

 A1-64

DFD 1: Routing Module

The Routing Module is responsible for locating an interface for the given message. It
must first Verify and Update [the] Incoming Message taking care of Hop Count
(Time-To-Live) fields; the message is dropped using Drop Invalid Message if this
verification fails. Having had this occur, the next Interface Address for the Valid Data
Message is located in Compute Next Hop. This computation involves interface
specific state and general routing information. If no route can be found, then the
Unroutable Data Message is dropped; otherwise it is passed out as an Interface Data
Message to be processed by a specific Network Interface.

1.1.
Verify and Update
Incoming Message

1.3.
Compute
Next Hop

1.2.
Drop

Invalid
Message

Unroutable
Data

Message

Invalid
Data

Message

Router
Data

Message

Valid
Data

Message

Interface
Load

Routing Table
Entry

Interface
State

Interface
Address

Interface
Data

Message

Invalid
Data

Message

 A1-65

DFD 2. Management Processor

The Management Processor has a straight forward partitioning. Firstly, the message is
processed in Validate Mgmt Message and Extract IE to ensure that it has the correct
destination address and content, after which the content is processed according its
type. The only specific content processed at this point in time is the Routing-Module
Routing Entry IE in Process Routing Entry IE -- this results in a change to a Routing
Table Entry

2.1.
Validate Mgmt Msg

and Extract IE

2.2.
Process

Routing Entry
IE

Routing
Entry

IE Routing
Table
Entry

Management
Message Address

PSPEC 3. Interface Message Switch

The given Interface Data Message is switched to a specific output depending upon the
given Interface Number.

 Inputs:
 Interface_Data_Msg: Network Data Indication Message
 Interface_Number: Integer
 Outputs:
 Interface_Data_Msg<X> : Network Data Indication Message
 Operation:
 1. Interface_Data_Msg<Interface_Number> := Inteface_Data_Msg
 2. STOP

 A1-66

DFD 4. Network Layer Interface

The Network Layer Interface is architecturally divided into processing messages
arriving from the Network Layer, and processing messages destined for the Network
Layer. Messages from, are first classified in Classify Network Message and thence
switched to be processed by a specific task. Process Connect Message and Process
Disconnect Message results in a change to the Interface State, whereas Process Status
Message results in a change to the Interface Load and Process Data Message passes
the message as a Router Data Indication for routing. Outgoing messages, Interface
Data Messages, are transformed into a Network Data Request Message for output.

4.1.
Classify
Network
Message

4.2.
Process
Connect
Message

4.3.
Process

Disconnect
Message

4.4.
Process
Status

Message

4.5.
Process

Data
Message

4.6.
Process
Outgoing

Data
Message

Connect
Message

Disconnect
Message

Status
Message

Data
Message

Network
Message

Interface
Data

Message

Interface
State

Interface
State

Interface
Load

Router
Data

Message

Network
Data

Request
Message

 A1-67

PSPEC 1.1. Verify and Update Incoming Message

In Verify and Update Incoming Message, the Router Data Message has its hop count
field decremented and then checked to see whether or not it is zero: if it is, then the
message is considered to be an Invalid Data Message, otherwise the modified
message is output as a Valid Data Message.

 Inputs:
 Router_Data_Msg: Network Data Indication Message
 Outputs:
 Invalid_Data_Msg: Network Data Indication Message
 Valid_Data_Msg: Network Data Indication Message
 Operation:
 1. DECLARE Hop_Count: Integer
 2. Hop_Count := ExtractMsg_N_Data_Ind (Router_Data_Msg,HOPCOUNT)
 3. Hop_Count := Hop_Count - 1
 4. InsertMsg_N_Data_Ind (Router_Data_Msg, HOPCOUNT, Hop_Count)
 4. IF Hop_Count = 0 THEN
 1. Invalid_Data_Msg := Router_Data_Msg
 5. IF Hop_Count > 0 THEN
 1. Valid_Data_Msg := Router_Data_Msg
 6. STOP

PSPEC 1.2. Drop Invalid Message

In Drop Invalid Message, the Invalid Data Message is dropped after a suitable log is
made.

 Inputs:
 Invalid_Data_Msg: Network Data Indication Message
 Outputs:
 n/a
 Operation:
 1. LOG ("Dropping Message due to Problem:")
 2. LOG (Invalid_Data_Msg)
 3. STOP

 A1-68

 A1-69

PSPEC 1.3. Compute Next Hop

In Compute Next Hop, an Interface Address must be determined for the Valid Data
Message. This is done by looking through all the Routing Table Entries for the
message's Address in order to select an Interface with the least cost. This function is
the critical centre of the router, and where most time will be spent.

 Inputs:
 Valid_Data_Msg: Network Data Indication Message
 Interface_State: ARRAY OF Boolean
 Interface_Load: ARRAY OF Real
 Routing_Table_Entry: MATRIX OF Real
 Outputs:
 Interface_Address: Integer
 Interface_Data_Msg: Network Data Indication Message
 Unroutable_Data_Msg: Network Data Indication Message
 Operation:
 1. DECLARE InterfaceCost: Real
 2. DECLARE InterfaceNumber: Integer
 3. DECLARE InterfaceCount: Integer
 4. DECLARE Address: Integer
 5. Address := ExtractMsg_N_Data_Ind (Valid_Data_Msg, ADDRESS)
 6. InterfaceNumber := -1
 7. InterfaceCount := 0
 Label_Loop_Next:
 8. IF Interface_State[InterfaceCount] = True THEN
 1. DECLARE Cost: Real
 2. Cost := ComputeCost (Address, InterfaceCount,
 Interface_Load, Routing_Table_Entry)
 3. IF Cost > InterfaceCost THEN
 1. InterfaceCost := Cost
 2. InterfaceNumber := InterfaceCount
 9. InterfaceCount := InterfaceCount + 1
 10. IF InterfaceCount < MAXIMUM_INTERFACES THEN Label_Loop_Next
 11. IF InterfaceCount = -1 THEN
 1. Unroutable_Data_Msg := Valid_Data_Msg
 12. IF InterfaceCount != -1 THEN
 1. Interface_Address := InterfaceNumber
 2. Interface_Data_Msg := Valid_Data_Msg
 13. STOP

FUNCTION 1.3.1. ComputeCost

This PSPEC uses a function that computes a "weighted cost" by using the interfaces
defined cost, and weighing it according to the current load on that interface. This has
been encapsulated within a function so as to allow modifications. Note that BETA is
the defined weighing factor, whose value is not specifically known and can be
arbitrary set.

 Function:
 ComputeCost
 Inputs:
 Address: Integer
 Interface: Integer
 Interface_Load: Real
 Routing_Table_Entry: MATRIX OF Real
 Outputs:
 Cost: Real
 Operation:
 1. Cost := Routing_Table_Entry[Address][Interface] +
 Interface_Load[Interface] * BETA
 2. STOP

PSPEC 2.1. Validate Mgmt Message and Extract IE

The Management Message is inspected to ensure that is destined for this module, and
that its content is valid using Validate Mgmt Message and Extract IE. The appropriate
output is generated depending on the type of content.

 Inputs:
 Mgmt_Msg: Management Set Indication Message
 Address: Integer
 Outputs:
 Routing_Entry_IE: Routing-Module Routing Entry IE
 Processing:
 1. DECLARE Unknown_IE: IE
 2. IF Address (Mgmt_Msg) = Address THEN
 1. Unknown_IE := ExtractMsg_M_Set_Ind (Mgmt_Msg)
 2. IF Type (Unknown_IE) = Type (Routing_Entry_IE)
 1. Routing_Entry_IE := Unknown_IE
 3. STOP

PSPEC 2.2. Process Routing Entry IE

The content of the Routing Entry IE is processed in Process Routing Entry IE and
used to update a Routing Table Entry. Note that the Routing Table Entry is a matrix
keyed by the Address and Interface relating to the Route. The Cost is the component
stored in the matrix.

 Inputs:
 Routing_Entry_IE: Routing-Module Routing Entry IE
 Outputs:
 Routing_Table_Entry: MATRIX OF Real
 Processing:
 1. DECLARE Address: Integer
 2. DECLARE Interface: Integer
 3. DECLARE Cost: Real
 4. Address :=
 ExtractIE_RM_Routing_Entry (Routing_Entry_IE, ADDRESS)
 5. Interface :=
 ExtractIE_RM_Routing_Entry (Routing_Entry_IE, INTERFACE)
 6. Cost := ExtractIE_RM_Routing_Entry (Routing_Entry_IE, COST)
 5. Routing_Table_Entry[Address][Interface] := Cost
 6. STOP

 A1-70

PSPEC 4.1. Classify Network Message

The message must be classified according to its type so that it can be processed by the
appropriate task. This is done by looking at the type of the message.

 Inputs:
 Network_Msg: Message
 Outputs:
 Connect_Msg: Network Connect Indication Message
 Disconnect_Msg: Network Disconnect Indication Message
 Status_Msg: Network Status Indication Message
 Data_Msg: Network Data Indication Message
 Operation:
 1. If Type (Connect_Msg) = Type (Network_Msg) THEN
 1. Connect_Msg := Network_Msg
 2. If Type (Disconnect_Msg) = Type (Network_Msg) THEN
 1. Disconnect_Msg := Network_Msg
 3. If Type (Status_Msg) = Type (Network_Msg) THEN
 1. Status_Msg := Network_Msg
 4. If Type (Data_Msg) = Type (Network_Msg) THEN
 1. Data_Msg := Network_Msg
 5. STOP

PSPEC 4.2. Process Connect Message

The message is used to indicate the current state of the Network Layer. Note that this
Interface State is particular to our interface, i.e. it is parameterised at an upper level.

 Inputs:
 Connect_Msg: Network Connect Indication Message
 Outputs:
 Interface_State: Boolean
 Processing:
 1. Interface_State := True
 2. STOP

PSPEC 4.3. Process Disconnect Message

The message is used to indicate the current state of the Network Layer. Note that this
Interface State is particular to our interface, i.e. it is parameterised at an upper level.

 Inputs:
 Disconnect_Msg: Network Disconnect Indication Message
 Outputs:
 Interface_State: Boolean
 Processing:
 1. Interface_State := False
 2. STOP

 A1-71

PSPEC 4.4. Process Status Message

The message is used to indicate the current load state of the Network Layer; this is
used in the determination of a next hop. Note that this Interface Load is particular to
our interface, i.e. it is parameterised at a global level.

 Inputs:
 Status_Msg: Network Status Indication Message
 Outputs:
 Interface_Load: Real
 Processing:
 1. DECLARE Load_IE: Network Load IE
 2. Load_IE := ExtractMsg_N_Status_Ind (Status_Msg, IE)
 3. Interface_Load := ExtractIE_N_Load (Load_IE)
 4. STOP

PSPEC 4.5. Process Data Message

The message is passed through, unaltered.

 Inputs:
 Data_Msg: Network Data Indication Message
 Outputs:
 Router_Data_Msg: Network Data Indication Message
 Processing:
 1. Router_Data_Msg := Data_Msg
 2. STOP

PSPEC 4.6. Process Outgoing Data Message

The message is converted from an indication to a request so that it can be passed to
the Network Layer.

 Inputs:
 Interface_Data_Msg: Network Data Indication Message
 Outputs:
 Network_Data_Request_Msg: Network Data Request Message
 Processing:
 1. Network_Data_Request_Msg :=
 ConvertMsg_N_Data_Ind_To_Req (Interface_Data_Msg)
 2. STOP

 A1-72

2.7. Generator

DFD 0: Top

The Top Level DFD illustrates the elements that receive and process messages from
Management. Firstly, the message is validated in Validate Mgmt Message and Extract
IE to ensure that it has the correct destination Address and content, after which the
content is processed according its type. A Setup IE is dealt with by the Setup
Generator process, and the Stop IE by the Cancel Timers process. The Setup
Generator itself can also initiate a Cancel Timers.

2.
Validate Mgmt Msg

and Extract IE

1.
Cancel Timers

Stop
IE

Management
Message

Address

3.
Setup

Generator

Setup
IE

Stop
Timers

Timer
Deactivate

Timer
Activate

Timer
Notify

Data
Length

PSPEC 1: Cancel Timers

The current timer is cancelled, to prevent further scheduling of generator activity.

 Inputs:
 Stop_IE : Generator Stop IE
 Stop_Timers: SIGNAL
 Outputs:
 Timer_Deactivate: SIGNAL
 Operation:
 1. Timer_Deactivate := STOP_TIMER ()
 2. STOP

 A1-73

PSPEC 2: Validate Mgmt Message and Extract IE

The Management Message is inspected to ensure that is destined for this module, and
that the content is valid, via Validate Mgmt Message and Extract IE. The appropriate
output is generated depending on the type of content.

 Inputs:
 Mgmt_Msg: Management Set Indication Message
 Address: Integer
 Outputs:
 Setup_IE: Generator Setup IE
 Stop_IE: Generator Stop IE
 Processing:
 1. DECLARE Unknown_IE: IE
 2. IF Address (Mgmt_Msg) = Address THEN
 1. Unknown_IE := ExtractMsg_Mgmt_Set_Ind (Mgmt_Msg)
 2. IF Type (Unknown_IE) = Type (Setup_IE)
 1. Setup_IE := Unknown_IE
 3. IF Type (Unknown_IE) = Type (Stop_IE)
 1. Stop_IE := Unknown_IE
 3. STOP

 A1-74

DFD 3: Setup Generator

The Setup Generator carries out three main tasks. The first task is the classification of
the Setup IE and subsequent passing to the respective process that will generate output
using the conveyed profile parameters. The second task is the extraction and setup of
filter parameters in Setup Filter Parameters. These parameters are used in the third
task of filtering output, in Filter Output. The latter will either allow Data Length to
pass through, or signal the Cancel Timers to prevent any more scheduling if a
limitation has been reached.

3.1.
Classify
Type of
Setup IE

3.3.
Telnet

Processing

3.2.
Setup
Filter

Parameters

3.4.
FTP

Processing

3.5.
Statistical

Processing

3.6.
Filter

Output

Setup
Telnet

IE

Setup
FTP
IE

Setup
Statistical

IE

Maximum
Count

Maximum
Length

Maximum
Time

Data
Length

Data
Length

Data
Length

Data
Length

Data
Length

Setup
IE

Timer
Notify

Timer
Notify

Timer
Notify

Timer
Activate

Timer
Activate

Timer
Activate

Stop
Timers

 A1-75

PSPEC 3.1: Classify Type of Setup IE

The input Setup IE is further classified according to the type of profile that it is setting
up. It is then placed onto the corresponding output.

 Inputs:
 Setup_IE: Generator Setup IE
 Outputs:
 Setup_Telnet_IE: Generator Setup Telnet IE
 Setup_FTP_IE: Generator Setup FTP IE
 Setup_Statistical_IE: Generator Setup Statistical IE
 Operation:
 1. IF Type (Setup_IE) = Type (Setup_Telnet_IE) THEN
 1. Setup_Telnet_IE := Setup_IE
 2. IF Type (Setup_IE) = Type (Setup_FTP_IE) THEN
 1. Setup_FTP_IE := Setup_IE
 3. IF Type (Setup_IE) = Type (Setup_Statistical_IE) THEN
 1. Setup_Statistical_IE := Setup_IE
 4. STOP

PSPEC 3.2: Setup Filter Parameters

The Setup IE also contains parameters indicating limitations that are to be imposed
via. the output filter. Setup Filter Parameters is responsible for extracting these
parameters and holding them.

 Inputs:
 Setup_IE: Generator Setup IE
 Outputs:
 Maximum_Time: Real
 Maximum_Length: Integer
 Maximum_Count: Integer
 Operation:
 1. Maximum_Time := ExtractIE_G_Setup_IE (Setup_IE, MAX_TIME)
 2. Maximum_Length := ExtractIE_G_Setup_IE (Setup_IE, MAX_LENGTH)
 3. Maximum_Count := ExtractIE_G_Setup_IE (Setup_IE, MAX_COUNT)
 4. STOP

 A1-76

DFD 3.3: Telnet Processing

In Telnet Processing the arrival of either a Timer Notify due to expiry, or a Setup
Telnet IE will trigger the generation of the next item using Generate Telnet Profile.
This will set up a timer, by way of Timer Activate, and generate a Data Length.

3.3.1.
Generate

Telnet
Profile

Timer
Activate

Timer
Notify

Setup
Telnet

IE

Next

Data
Length

DFD 3.4: FTP Processing

In FTP Processing the arrival of either a Timer Notify due to expiry, or a Setup FTP
IE will trigger the generation of the next item using Generate FTP Profile. This will
set up a timer, by way of Timer Activate, and generate a Data Length.

3.4.1.
Generate

FTP
Profile

Timer
Activate

Timer
Notify

Setup
FTP
IE

Next

Data
Length

 A1-77

DFD 3.5: Statistical Processing

In Statistical Processing the arrival of a Setup Statistical IE is processed by Process
Statistical IE which extracts the Timer Parameter and Space Parameter. Also, both
the Process Statistical IE and a Timer Notify, due to expiry, will trigger the generation
of the next time using the two parameters. This will set up a timer, by way of Timer
Activate, and generate a Data Length.

Time
Parameter

3.5.1.
Process

Statistical
IE

Space
Parameter

3.5.2.
Generate
Statistical

Profile

Timer
Activate

Timer
Notify

Next

Data
Length

Setup
Statistical

IE

Setup
Statistical

IE

 A1-78

PSPEC 3.6: Filter Output

When Data Length is generated and placed for output, the Filter Output is used to
ensure that the generation of this item does not exceed a defined limitation. This
limitation may be either due to the total number of items output, the time during
which items have been output, or the total size of all the items output. These limits are
defined by way of the Maximum Count, Maximum Time and Maximum Length data
stores. If a limitation is reached, then Stop Timers is indicated.

 Inputs:
 In_Data_Length: Integer
 Maximum_Time: Real
 Maximum_Length: Integer
 Maximum_Count: Integer
 Outputs:
 Data_Length: Integer
 Stop_Timers: SIGNAL
 Processing:
 1. IF Maximum_Time < CURRENT_TIME THEN
 1. Maximum_Count := Maximum_Count - 1
 2. IF Maximum_Count > 0 THEN
 1. Maximum_Length := Maximum_Length - In_Data_Length
 2. IF Maximum_Length < 0
 1. In_Data_Length := In_Data_Length + Maximum_Length
 3. IF Maximum_Length > 0
 1. Data_Length := In_Data_Length
 2. STOP
 1. SIGNAL Stop_Timers
 2. STOP

PSPEC 3.3.1. Generate Telnet Profile

In Generate Telnet Profile, a Data Length and time interval, via. Timer Activate, are
constructed using the TCPLIB samples that are provided.

 Inputs:
 Next: SIGNAL
 Outputs:
 Timer_Activate: SIGNAL
 Data_Length: Integer
 Processing:
 1. Data_Length := TCPLIB_Telnet_Get_Length ()
 2. Timer_Activate := SET_TIMER (TCPLIB_Telnet_Get_Duration ())
 3. STOP

 A1-79

PSPEC 3.4.1. Generate FTP Profile

In Generate FTP Profile, a Data Length and time interval, via. Timer Activate, are
constructed using the TCPLIB samples that are provided.

 Inputs:
 Next: SIGNAL
 Outputs:
 Timer_Activate: SIGNAL
 Data_Length: Integer
 Processing:
 1. Data_Length := TCPLIB_FTP_Get_Length ()
 2. Timer_Activate := SET_TIMER (TCPLIB_FTP_Get_Duration ())
 3. STOP

PSPEC 3.5.1. Process Statistical IE

When a Setup Statistical IE is received by Process Statistical IE, its content is
extracted and placed into the Time Parameter and Space Parameter outputs.

 Inputs:
 Setup_Stat_IE: Generator Setup Statistical IE
 Outputs:
 Time_Parameter: Statistical Info
 Space_Parameter: Statistical Info
 Processing:
 1. Time_Parameter := ExtractIE_G_Setup_Statistical
 (Setup_Stat_IE, TIME)
 2. Space_Parameter := ExtractIE_G_Setup_Statistical
 (Setup_Stat_IE, SPACE)
 3. STOP

PSPEC 3.5.2. Generate Statistical Profile

In Generate Statistical Profile, a Data Length and time interval, via. Timer Activate,
are constructed using the Statistical module with the previously set Time Parameter
and Space Parameter.

 Inputs:
 Next: SIGNAL
 Time_Parameter: Statistical Info
 Space_Parameter: Statistical Info
 Outputs:
 Timer_Activate: SIGNAL
 Data_Length: Integer
 Processing:
 1. Data_Length := Get_Statistical_Info (Space_Parameter)
 2. Timer_Activate := SET_TIMER (Get_Statistical_Info
 (Time_Parameter))
 3. STOP

 A1-80

2.8. Management

DFD 0: Top

The Top Level DFD illustrates the steps used to execute commands from Filename.
Open and Initialise occurs on Startup after which there is a cycle of: Read and Wait
For Next Entry (delay until the next entry is to be processed), Extract Address and
Module (extract command's destination information), Generate Specific IE (process
the command itself) and Construct and Send Message (transmit the IE to the specified
destination). Any Error will Indicate Failure.

1.
Read and Wait
for Next Entry

4.
Construct

and
Send

Message

2.
Extract

Address and
Module

3.
Generate
Specific

IE

5.
Indicate
Failure

Address

Go

Module
Number

Valid
IE

Error

6.
Open and
Initialise

Filename

Next

Next

Next

Next

Startup

Management
Message

Error

Error

Error

 A1-81

PSPEC 1. Read and Wait for Next Entry

In Read and Wait for Next Entry, the time at which the command is to occur is read;
execution is suspended until that time is reached.

 Inputs:
 Next: SIGNAL
 Outputs:
 Error: SIGNAL
 Go: SIGNAL
 Operation:
 1. DECLARE Time: Real
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Time := File_Get_Real ()
 4. DELAY (Time - CURRENT_TIME)
 5. SIGNAL Go
 6. STOP

PSPEC 2. Extract Address and Module

In Extract Address and Module, the specific destination Address is read and stored,
and the Module Number is also retrieved and passed on.

 Inputs:
 Go: SIGNAL
 Outputs:
 Module_Number: Integer
 Address: Integer
 Error: SIGNAL
 Operation:
 1. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 2. Address := File_Get_Integer ()
 3. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 4. Module_Number := File_Get_Integer ()
 5. STOP

 A1-82

DFD 3. Generate Specific IE

In Generate Specific IE, the type of IE to create is determined by first passing
processing onto a process depending on the given Module Number. Each of these
processes is specific to a module type, and processing either results in a Valid IE or an
Error.

3.1.
Switch

on
Module
Number

Module
Number

3.2.
Process

Transport
Adaption

IE

3.3.
Process
Network
Adaption

IE

3.4.
Process
Network

IE

3.7.
Process
Datalink

IE

3.8.
Process

Generator
IE

3.6.
Process
Routing
Module

IE

3.5.
Process

Transport
IE

Type 0

Type 1

Type 2

Type 3

Type 4

Type 6

Type 5

Valid IE

Error

(from
each

process)

(from
each

process)

 A1-83

PSPEC 4. Construct and Send Message

In Construct and Send Message, the given Address and a Valid IE are used to build a
Management Message.

 Inputs:
 Address: Integer
 Valid_IE: IE
 Outputs:
 Management_Message: Management Set Indication Message
 Next: SIGNAL
 Operation:
 1. Management_Message :=
 ConstructMsg_M_Set_Ind (Address, Valid_IE)
 2. SIGNAL Next
 3. STOP

PSPEC 5. Indicate Failure

In Indicate Failure, which occurs if some other failure occurred usually due to a
premature end of file, or unexpected file contents, an error message is logged.

 Inputs:
 Error: SIGNAL
 Outputs:
 Next: SIGNAL
 Operation:
 1. LOG ("Invalid File Contents")
 2. SIGNAL Next
 3. STOP

PSPEC 6. Open and Initialise

Open and Initialise concerns itself with using the Filename to open a file stream for
subsequent use.

 Inputs:
 Startup: SIGNAL
 Filename: String
 Outputs:
 Error: SIGNAL
 Next: SIGNAL
 Operation:
 1. IF File_Open (Filename) = Error THEN
 1. SIGNAL Error
 2. STOP
 2. SIGNAL Next
 3. STOP

 A1-84

PSPEC 3.1. Switch on Module Number

In Switch on Module Number the input Module Number is used to activate a specific
process to parse the specified IE. Note that if the specified module number is
incorrect, an Error will occur.

 Inputs:
 Module_Number: Integer
 Outputs:
 Type_0: SIGNAL
 Type_1: SIGNAL
 Type_2: SIGNAL
 Type_3: SIGNAL
 Type_4: SIGNAL
 Type_5: SIGNAL
 Type_6: SIGNAL
 Error: SIGNAL
 Operation:
 1. IF Module_Number = 0 THEN
 1. SIGNAL Type_0
 2. IF Module_Number = 1 THEN
 1. SIGNAL Type_1
 3. IF Module_Number = 2 THEN
 1. SIGNAL Type_2
 4. IF Module_Number = 3 THEN
 1. SIGNAL Type_3
 5. IF Module_Number = 4 THEN
 1. SIGNAL Type_4
 6. IF Module_Number = 5 THEN
 1. SIGNAL Type_5
 7. IF Module_Number = 6 THEN
 1. SIGNAL Type_6
 8. IF Module_Number < 0 OR Module_Number > 6 THEN
 1. SIGNAL Error
 9. STOP

PSPEC 3.2. Process Transport-Adaption IE

In Process Transport-Adaption IE there are two possible commands that need to be
interpreted into IEs. The first is a Connect IE and the second is a Disconnect IE. An
Error will occur if the type to be interpreted is not known.

 Inputs:
 Input_Kick: SIGNAL
 Outputs:
 Error: SIGNAL
 Valid_IE: IE
 Operation:
 1. DECLARE Type: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Type := File_Get_Integer ()
 4. IF Type = 0 THEN
 1. (Error, IE) := Process_Connect_IE ()
 2. STOP
 5. IF Type = 1 THEN
 1. (Error, IE) := Process_Disconnect_IE ()
 2. STOP
 6. SIGNAL Error
 7. STOP

 A1-85

 A1-86

 6. STOP

FUNCTION 3.2.1. Process Connect IE

The Process_Connect_IE consists of reading in a single Address to be placed into the
IE.

 Function:
 Process_Connect_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 Connect_IE: Transport-Adaption Connect IE
 Operation:
 1. DECLARE Address: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Address := File_Get_Integer ()
 4. Connect_IE := ConstructIE_TA_Connect (Address)
 5. STOP

FUNCTION 3.2.2. Process Disconnect IE

The Process_Disconnect_IE consists only of the construct of an IE as there are no
parameters to be placed into the IE.

 Function:
 Process_Disconnect_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 Disconnect_IE: Transport-Adaption Disconnect IE
 Operation:
 1. Disconnect_IE := ConstructIE_TA_Disconnect ()
 2. STOP

PSPEC 3.3. Process Network-Adaption IE

In Process Network-Adaption IE there is only one possible command that needs to be
interpreted into an IE. This is the Address List IE. An Error will occur if the type is
not known.

 Inputs:
 Input_Kick: SIGNAL
 Outputs:
 Error: SIGNAL
 Valid_IE: IE
 Operation:
 1. DECLARE Type: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Type := File_Get_Integer ()
 4. IF Type = 0 THEN
 1. (Error, IE) := Process_Address_List_IE ()
 2. STOP
 5. SIGNAL Error

FUNCTION 3.3.1. Process Address List IE

In Process Address List IE, the first entry is read to indicate how many Addresses will
be present, then each one is subsequently read in and placed into the Address List. The
IE is created using this Address List.

 Function:
 Process_Address_List_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 Address_List_IE: Network-Adaption Address List IE
 Operation:
 1. DECLARE Address_List: ARRAY OF Integer
 2. DECLARE Count: Integer
 3. DECLARE Address_Count: Integer
 4. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 5. Address_Count := File_Get_Integer ()
 6. Count := 0
 Label_Loop_Next:
 7. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 8. Address_List[Count] := File_Get_Integer ()
 9. Count := Count + 1
 10. IF Count < Address_Count THEN GOTO Label_Loop_Next
 11. Address_List_IE :=
 ConstructIE_NA_Address_List (Address_List)
 12. STOP

PSPEC 3.4. Process Network IE

There are no IEs currently defined for the Network Layer, so Process Network IE is a
stub to be expanded at a later date. As such, it currently generates an error on any
invocation.

 Inputs:
 Input_Kick: SIGNAL
 Outputs:
 Error: SIGNAL
 Valid_IE: IE
 Operation:
 1. SIGNAL Error
 2. STOP

 A1-87

PSPEC 3.5. Process Transport IE

In Process Transport IE there is only one possible command that needs to be
interpreted into an IE. This is the Setup IE. An Error will occur if the type is not
known.

 Inputs:
 Input_Kick: SIGNAL
 Outputs:
 Error: SIGNAL
 Valid_IE: IE
 Operation:
 1. DECLARE Type: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Type := File_Get_Integer ()
 4. IF Type = 0 THEN
 1. (Error, IE) := Process_Setup_IE ()
 2. STOP
 5. SIGNAL Error
 6. STOP

FUNCTION 3.5.1. Process Setup IE

In Process Setup IE, there is one parameter to be read, and this is the ISN. This is used
in the creation of the IE.

 Function:
 Process_Setup_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 Setup_IE: Transport Setup IE
 Operation:
 1. DECLARE ISN: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. ISN := File_Get_Integer ()
 4. Setup_IE := ConstructIE_T_Setup (ISN)
 5. STOP

 A1-88

PSPEC 3.6. Process Routing-Module IE

In Process Routing-Module IE there is only one possible command that needs to be
interpreted into an IE. This is the Routing Entry IE. An Error will occur if the type is
not known.

 Inputs:
 Input_Kick: SIGNAL
 Outputs:
 Error: SIGNAL
 Valid_IE: IE
 Operation:
 1. DECLARE Type: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Type := File_Get_Integer ()
 4. IF Type = 0 THEN
 1. (Error, IE) := Process_Routing_Entry_IE ()
 2. STOP
 5. SIGNAL Error
 6. STOP

FUNCTION 3.6.1. Process Routing Entry IE

In Process Routing Entry IE, there are three parameters to be read, the Address,
Interface and Cost. These are used in the creation of the IE.

 Function:
 Process_Routing_Entry_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 Routing_Entry_IE: Routing-Module Routing Entry IE
 Operation:
 1. DECLARE Address: Integer
 2. DECLARE Interface: Integer
 3. DECLARE Cost: Real
 4. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 5. Address := File_Get_Integer ()
 6. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 7. Interface := File_Get_Integer ()
 8. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 9. Cost := File_Get_Real ()
 10. Routing_Entry_IE :=
 ConstructIE_R_Routing_Entry (Address, Interface, Cost)
 11. STOP

 A1-89

PSPEC 3.7. Process Datalink IE

In Process Datalink IE there is only one possible command that needs to be
interpreted into an IE. This is the State IE. An Error will occur if the type is not
known..

 Inputs:
 Input_Kick: SIGNAL
 Outputs:
 Error: SIGNAL
 Valid_IE: IE
 Operation:
 1. DECLARE Type: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Type := File_Get_Integer ()
 4. IF Type = 0 THEN
 1. (Error, IE) := Process_State_IE ()
 2. STOP
 5. SIGNAL Error
 6. STOP

FUNCTION 3.7.1. Process State IE

In Process State IE, there is one parameter to be read. This parameter is the State for
the Datalink Layer and is used in the creation of the IE.

 Function:
 Process_State_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 State_IE: Datalink State IE
 Operation:
 1. DECLARE State: Boolean
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. State := File_Get_Boolean ()
 4. State_IE := ConstructIE_DL_State (State)
 5. STOP

 A1-90

PSPEC 3.8. Process Generator IE

In Process Generator IE there are two possible commands that need to be interpreted
into IEs. The first is a Setup IE and the second is a Stop IE. An Error will occur if the
type to be interpreted is not known.

 Inputs:
 Input_Kick: SIGNAL
 Outputs:
 Error: SIGNAL
 Valid_IE: IE
 Operation:
 1. DECLARE Type: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Type := File_Get_Integer ()
 4. IF Type = 0 THEN
 1. (Error, IE) := Process_Setup_IE ()
 2. STOP
 5. IF Type = 1 THEN
 1. (Error, IE) := Process_Stop_IE ()
 2. STOP
 6. SIGNAL Error
 7. STOP

FUNCTION 3.8.1. Process Stop IE

The functionality for Process Stop IE is simple in that there are no parameters, so only
the construction of the IE occurs.

 Function:
 Process_Stop_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 Stop_IE: Generator Stop IE
 Operation:
 1. Stop_IE := ConstructIE_G_Stop ()
 2. STOP

 A1-91

FUNCTION 3.8.2. Process Setup IE

The functionality for Process Setup IE is slightly more complex in that there are three
global filter parameters, followed by specific parameters according to the type of
generation that will occur, within which there may be more parameters.

 Function:
 Process_Setup_IE
 Inputs:
 n/a
 Outputs:
 Error: SIGNAL
 Setup_IE: Generator Setup IE
 Operation:
 1. DECLARE Count: Integer
 2. DECLARE Time: Real
 3. DECLARE Length: Integer
 4. DECLARE Type: Integer
 5. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 6. Count := File_Get_Integer ()
 7. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 8. Time := File_Get_Real ()
 9. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 10. Length := File_Get_Integer ()
 11. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 12. Type := File_Get_Integer ()
 13. IF Type = 0 THEN
 1. Setup_IE :=
 ConstructIE_G_Setup_Telnet (Count, Time, Length)
 14. IF Type = 1 THEN
 1. Setup_IE := ConstructIE_G_Setup_FTP (Count, Time, Length)
 15. IF Type = 2 THEN
 1. DECLARE Time_Stat: Statistical Info
 2. DECLARE Space_Stat: Statistical Info
 3. (Time_Stat, Error) := Process_Stat_Info ()
 4. IF Error THEN
 1. STOP
 5. (Space_Stat, Error) := Process_Stat_Info ()
 6. IF Error THEN
 1. STOP
 7. Setup_IE := ConstructIE_G_Setup_Statistical (Count,
 Time, Length, Stat)
 16. STOP

 A1-92

FUNCTION 3.8.3. Process Stat Info

 Function:
 Process_Stat_Info
 Inputs:
 n/a
 Outputs:
 Stat: Statistical Info
 Error: SIGNAL
 Operation:
 1. DECLARE Type: Integer
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. IF Type = 0 THEN
 1. DECLARE Value: Real
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Value := File_Get_Real ()
 4. Stat := Create_Stat_Constant (Value)
 4. IF Type = 1 THEN
 1. DECLARE Lower: Real
 2. DECLARE Upper: Real
 3. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 4. Lower := File_Get_Real ()
 5. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 6. Upper := File_Get_Real ()
 7. Stat := Create_Stat_Uniform (Lower, Upper)
 5. IF Type = 2 THEN
 1. DECLARE Mean: Real
 2. DECLARE Variance: Real
 3. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 4. Mean := File_Get_Real ()
 5. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 6. Variance := File_Get_Real ()
 7. Stat := Create_Stat_Normal (Mean, Variance)
 6. IF Type = 3 THEN
 1. DECLARE Mean: Real
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Mean := File_Get_Real ()
 4. Stat := Create_Stat_Exponential (Mean)
 7. IF Type = 4 THEN
 1. DECLARE Lambda: Real
 2. IF File_Is_End () = True THEN
 1. SIGNAL Error
 2. STOP
 3. Lambda := File_Get_Real ()
 4. Stat := Create_Stat_Poisson (Lambda)
 8. IF Type < 0 OR Type > 4 THEN
 1. SIGNAL Error
 9. STOP

 A1-93

 A1-94

3. Miscellaneous Modules

3.1. Statistical Parameter
There are two classes of functions. The first class has one member, this is
Get_Statistical_Info, and its purpose is to create an instance value of the parameter,
without knowing what particular parameter it is that is being created. Internally, the
creation is deferred to a subprocedure applicable to the type of parameter that there is:

 Function:
 Get_Statistical_Info
 Inputs:
 Info: Statistical Info
 Outputs:
 Value: REAL
 Operation:
 1. IF Type (Info) = 'Statistical Info Constant' THEN
 1. Value := Get_Statistical_Info_Constant (Info)
 2. IF Type (Info) = 'Statistical Info Uniform' THEN
 1. Value := Get_Statistical_Info_Uniform (Info)
 3. IF Type (Info) = 'Statistical Info Normal' THEN
 1. Value := Get_Statistical_Info_Normal (Info)
 4. IF Type (Info) = 'Statistical Info Exponential' THEN
 1. Value := Get_Statistical_Info_Exponential (Info)
 5. IF Type (Info) = 'Statistical Info Poisson' THEN
 1. Value := Get_Statistical_Info_Poisson (Info)
 6. STOP

 Function:
 Get_Statistical_Info_Constant
 Inputs:
 Info: Statistical Info Constant
 Outputs:
 Value: REAL
 Operation:
 1. Value := Info.Value
 2. STOP

 Function:
 Get_Statistical_Info_Uniform
 Inputs:
 Info: Statistical Info Uniform
 Outputs:
 Value: REAL
 Operation:
 1. Value := RANDOM_UNIFORM (Info.Minimum, Info.Maximum)
 2. STOP

 Function:
 Get_Statistical_Info_Normal
 Inputs:
 Info: Statistical Info Normal
 Outputs:
 Value: REAL
 Operation:
 1. Value := RANDOM_NORMAL (Info.Mean, Info.Variance)
 2. STOP

 A1-95

The second class of functions are creators; they allow for the creation of a specific
type of statistical parameter and return the abstract data structure upon return. There is
an implicit mechanism in here that determines the types that is not shown.

 Function:
 Get_Statistical_Info_Exponential
 Inputs:
 Info: Statistical Info Exponential
 Outputs:
 Value: REAL
 Operation:
 1. Value := RANDOM_EXP (Info.Mean)
 2. STOP

 Function:
 Get_Statistical_Info_Poisson
 Inputs:
 Info: Statistical Info Poisson
 Outputs:
 Value: REAL
 Operation:
 1. Value := RANDOM_POISSON (Info.Lambda)
 2. STOP

 Function:
 Create_Stat_Constant
 Inputs:
 Value: REAL
 Outputs:
 Info: Statistical Info
 Operation:
 1. Info.Value := Value
 2. STOP

 Function:
 Create_Stat_Uniform
 Inputs:
 Minimum: REAL
 Maximum: REAL
 Outputs:
 Info: Statistical Info
 Operation:
 1. Info.Minimum := Minimum
 2. Info.Maximum := Maximum
 2. STOP

 Function:
 Create_Stat_Normal
 Inputs:
 Mean: REAL
 Variance: REAL
 Outputs:
 Info: Statistical Info
 Operation:
 1. Info.Mean := Mean
 2. Info.Variance := Variance
 3. STOP

 Function:
 Create_Stat_Exponential
 Inputs:
 Mean: REAL
 Outputs:
 Info: Statistical Info
 Operation:
 1. Info.Mean := Mean
 2. STOP

 Function:
 Create_Stat_Poisson
 Inputs:
 Lambda: REAL
 Outputs:
 Info: Statistical Info
 Operation:
 1. Info.Lambda := Lambda
 2. STOP

 A1-96

3.2. Transport Layer -- TCP Probe
The TCP Probe maintains a Table of Parameters and Functions that it uses to carry out
its operation. It determines which function is to be used, based upon the supplied Data
Type Parameter, and then for each execution, it attempts to obtain the data value from
that function.

DEF TABLE Probe_Functions (Integer: Index,
 String: Parameter,
 Function: Processor)
 0, "Congestion Window", Get_Congestion_Window
 1, "Slow Start Threshold", Get_Slow_Start_Threshold
 2, "Retransmission Events", Get_ReTx_Events
 3, "Round Trip Time Average", Get_RTT_Average
 4, "Round Trip Time Variance", Get_RTT_Variance
 5, "Send Window", Get_Send_Window
 6, "Unacknowledged Data", Get_Unacknowledged_Data
 7, "Timer Expries", Get_Timer_Expiries
 8, "Acknowledgements Received", Get_Ack_Received
 9, "KB Retransmitted", Get_KB_ReTx
 10, "KB Transmitted", Get_KB_Tx
 11, "Reassembly Queue Size", Get_Reassembly_Queue_Size
ENDDEF

Function:
 TCP_Probe_Init
Inputs:
 First_Value: Boolean
 Data_Type: String
Outputs:
 Table_Index: Integer
Processing
 1. First_Value := True
 2. Table_Index := SELECT Index
 FROM Probe_Functions
 WHERE Parameter = Data_Type
 3. STOP

Function:
 TCP_Probe_Execute
Inputs:
 TCB_Index: Integer
 Duplicate: Boolean
 First_Value: Boolean
 Old_Value: Real
Outputs:
 New_Value: Real
Processing:
 1. DECLARE Tcb: TcbPtr
 2. DECLARE New_Value: Real
 3. Tcb := TCB_Lookup (TCB_Index);
 4. New_Value = TABLE (Table_Index).Processor (Tcb);
 5. IF (Duplicate == FALSE OR New_Value != Old_Value OR
 First_Value == TRUE) THEN
 1. OUTPUT (New_Value)
 2. First_Value = FALSE;
 3. Old_Value = New_Value
 6. ENDIF
 7. STOP

 A1-97

Each particular function is implemented as:

Function:
 Get_Congestion_Window
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.snd_cwnd
 2. Success := True
 3. STOP

Function:
 Get_Slow_Start_Threshold
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.snd_ssthresh
 2. Success := True
 3. STOP

Function:
 Get_ReTx_Events
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.probe_retx_count
 2. Tcb.probe_retx_count = 0
 3. IF Value > 0 THEN
 1. Success := True
 4. ELSE
 1. Success := False
 5. STOP

Function:
 Get_RTT_Average
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.t_srtt
 2. Success := True
 3. STOP

 A1-98

Function:
 Get_RTT_Variance
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.rttvar
 2. Success := True
 3. STOP

Function:
 Get_Send_Window
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.snd_wnd
 2. Success := True
 3. STOP

Function:
 Get_Unacknowledged_Data
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.snd_wnd - (Tcb.snd_nxt - Tcb.snd_una)
 2. Success := True
 3. STOP

Function:
 Get_Timer_Expiries
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.probe_texpiry
 2. Tcb.probe_texpiry = 0
 3. IF Value > 0 THEN
 1. Success := True
 4. ELSE
 1. Success := False
 5. STOP

 A1-99

Function:
 Get_Ack_Received
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.probe_ackrecv
 2. Tcb.probe_ackrecv = 0
 3. IF Value != 0 THEN
 1. Success := True
 4. ELSE
 1. Success := False
 5. STOP

Function:
 Get_KB_ReTx
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.probe_retx_count
 2. Success := True
 3. STOP

Function:
 Get_KB_Tx
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Tcb.probe_tx_count
 2. Success := True
 3. STOP

Function:
 Get_Reassembly_Queue_Size
Inputs:
 Tcb: TcbPtr
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := QueueSize (Tcb.FragmentQueue)
 2. Success := True
 3. STOP

 A1-100

3.3. Network Layer -- Queue Probe
The Queue Probe maintains a Table of Parameters and Functions that it uses to carry
out its operation. It determines which function is to be used, based upon the supplied
Data Type Parameter, and then for each execution, it attempts to obtain the data value
from that function.

And the individual functions are.

DEF TABLE Probe_Functions (Integer: Index,
 String: Parameter,
 Function: Processor)
 0, "Size", Get_Size
 1, "Source Address Count", Get_Src_Address_Count
 2, "Dest Address Count", Get_Src_Address_Count
ENDDEF

Function:
 Queue_Probe_Init
Inputs:
 First_Value: Boolean
 Data_Type: String
Outputs:
 Table_Index: Integer
Processing
 1. First_Value := True
 2. Table_Index := SELECT Index
 FROM Probe_Functions
 WHERE Parameter = Data_Type
 3. STOP

Function:
 Queue_Probe_Execute
Inputs:
 Queue_Index: Integer
 Duplicate: Boolean
 First_Value: Boolean
 Old_Value: Real
 Address: Integer
Outputs:
 New_Value: Real
Processing:
 1. DECLARE Queue: Queue Entry
 2. DECLARE New_Value: Real
 3. Queue := Queue_Lookup (Queue_Index);
 3. GLOBAL Address = Address
 4. New_Value = TABLE (Table_Index).Processor (Queue);
 5. IF (Duplicate == FALSE OR New_Value != Old_Value OR
 First_Value == TRUE) THEN
 1. OUTPUT (New_Value)
 2. First_Value = FALSE;
 3. Old_Value = New_Value
 6. ENDIF
 7. STOP

 A1-101

Function:
 Get_Size
Inputs:
 Queue: QueueEntry
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := Get_Size (Queue)
 2. Success := True
 3. STOP

Function:
 Get_Src_Address_Count
Inputs:
 Queue: QueueEntry
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := 0
 2. FOREACH Item IN Queue DO
 1. IF Get_Source_Address (Element) = GLOBAL Address THEN
 1. Value := Value + 1
 2. ENDIF
 3. ENDDO
 4. Success := True
 5. STOP

Function:
 Get_Dst_Address_Count
Inputs:
 Queue: QueueEntry
Outputs:
 Value: REAL
 Success: Boolean
Operation:
 1. Value := 0
 2. FOREACH Item IN Queue DO
 1. IF Get_Dest_Address (Element) = GLOBAL Address THEN
 1. Value := Value + 1
 2. ENDIF
 3. ENDDO
 4. Success := True
 5. STOP

 A1-102

APPENDIX 2. DETAILED BONES IMPLEMENTATION

1. OVERVIEW ...A2-2
2. PRIMARY MODULES ...A2-3

2.1. Datalink Layer.. A2-3
2.2. Network Layer .. A2-9
2.3. Transport Layer.. A2-37
2.4. Network-Adaption Layer .. A2-94
2.5. Transport-Adaption Layer.. A2-97
2.6. Routing-Module .. A2-99
2.7. Generator.. A2-106
2.8. Management ... A2-117

3. MISCELLANEOUS MODULES ...A2-126
3.1. Statistical Parameter .. A2-126
3.2. Transport - TCP Probe... A2-128
3.3. Common.. A2-136

 A2-1

1. Overview
The following sections provide the detailed aspects of the BONeS implementation.
This consists of a breakdown of all Modules in terms of their Data Structures, Main
Modules, Support Modules

The Data Structures are presented in tables, providing a verbose indication of
constituent fields including those that are inherited from parent Data Structures
(represented in italics). For Modules, BONeS diagrams are used to illustrate their
construction, and ‘C’ source code is provided where any such implementation was
carried out. Each Module has much more information, in terms of ports, parameters
and so on -- inclusion of this information would tend to expand the already
comprehensive information. It is important to document this information as it
provides necessary details behind the design.

There is a lot of detail here, as the implementation was partitioned significantly (the
intention to construct many small modules, rather than big unwieldy modules). In
addition, the ‘C’ source code is also verbose, due to its nature of being so.

 A2-2

 A2-3

Creation Time REAL (-Inf,+Inf) 0.0
Content Msg Primitive

2. Primary Modules

2.1. Datalink Layer

2.1.1. Data Structures

2.1.1.1. IE Datalink Primitive

This Data Structure has no content.

2.1.1.2. IE Datalink Flow Control

2.1.1.3. IE Datalink State

2.1.1.4. Msg Datalink Primitive

2.1.1.5. Msg Datalink Connect Primitive

2.1.1.6. Msg Datalink Connect Indication

2.1.1.7. Msg Datalink Data Primitive

2.1.1.8. Msg Datalink Data Indication

2.1.1.9. Msg Datalink Data Request

Name Type Subrange Default Value
Flow Control Released Boolean True

Name Type Subrange Default Value
State Boolean True

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content Msg Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content Msg Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0

2.1.1.10. Msg Datalink Disconnect Primitive

2.1.1.11. Msg Datalink Disconnect Indication

2.1.1.12. Msg Datalink Status Primitive

2.1.1.13. Msg Datalink Status Indication

2.1.2. Main Modules

2.1.2.1. Initialisation

This module is not shown in the design, as the design assumed implicit initialisation
whereas the initialisation is in fact explicit. It is responsible for setting the startup
State of the Datalink Layer and generating an appropriate Connect or Disconnect
Indication Message to its higher layer in order to inform it.
 __ DL Initialise [19-Dec-1995 17:00:46]

Msg

T
FState

Construct
Msg Datalink
Disconnect
Ind

Construct
Msg Datalink
Connect Ind

Switch

== ?

True
Init

M State

2.1.2.2. Transmission Channel

This Module is constructed for “DFD 1: Transmission Channel”, noting that that Flow
Control Has Been Released is used in place of Flow Control State.

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content IE Datalink

Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content IE Datalink

Primitive

 A2-4

 Transmission Channel [19-Dec-1995 17:04:58]

Status Msg Output

Msg Input Msg Output
M M

M
T
M

M M

M T

Conv ert
Request
To Indication

Transmission
Delay

Validate
Input

Indicate
Flow Control
Has Been
Released

M Flow Control Has Been Released

P Propagation Delay
P Bandwidth

M State

2.1.2.3. Transmission Channel -- Validate Input

This Module implements “PSPEC 1.1: Validate Input”.
 __ TC Validate Input [19-Dec-1995 17:06:14]

Msg Input

Msg Output
T
F

T
F

Switch

True

Switch

== ? == ?
Flow Control
Has Been
Released

State

True

M State
M Flow Control Has Been Released

2.1.2.4. Transmission Channel -- Transmission Delay

This Module is constructed for “PSPEC 1.2: Execute Transmission Delay”. The two
SLEEP functional points have been delegated to submodules (Delay Bandwidth and
Delay Propagation Delay) to prevent unecessary cluttering at this level.
 Transmission Delay [19-Dec-1995 17:06:54]

Msg Input

Msg Output

CTS Trigger

3
2
1

1
2

T
F

T
F

M M

M M
Execute
In Order
3

Execute
In Order

True
State == ?

Switch

Switch

== ?State
True

Delay Propagation-Delay

Delay
Bandwidth

True
False

Write Flow
Control Has
Been Released

M State

P Bandwidth

P Propagation Delay

M Flow Control Has Been Released

2.1.2.5. Transmission Channel -- Transmission Delay -- Delay Bandwidth

This Module implements part of “PSPEC 1.2: Execute Transmission Delay” and uses
BONeS Abs Delay primitive to SLEEP for a time corresponding to the length of the
Message.

 A2-5

 __ TD Delay Bandw idth [19-Dec-1995 17:11:15]

Note. Bandwidth is in Bits/Sec and Length is in Bytes.

Msg Input
Msg Output

M
L
C
M

Bandwidth

Abs
Delay

R/I->R

I->R

*8
Extract
Data Length

P Bandwidth

2.1.2.6. Transmission Channel -- Transmission Delay -- Delay Propagation
Delay

This Module implements part of “PSPEC 1.2: Execute Transmission Delay” and uses
BONeS Fixed Abs Delay to SLEEP for a time corresponding to the Propagation
Delay parameter.

 __ TD Delay Propagation Delay [19-Dec-1995 17:11:26]

Msg Input Msg Output
Fixed
Abs Delay

P Propagation Delay

2.1.2.7. Transmission Channel -- Indicate Flow Control Released

This Module implements “PSPEC 1.3: Indicate Flow Control Status”.

 __ TD Indicate Flow-Control Released [19-Dec-1995 17:11:37]

Trigger Msg Status

True
Construct
Msg Datalink
Status Ind

Construct
IE Datalink
Flow -Control

2.1.2.8. Management

This Module implements “DFD 2: Management Processor”, “PSPEC 2.1: Validate
Mgmt Message and Extract IE” and “PSPEC 2.2: Process Status IE”. Note that the
Management Message is received through the Management IE Portal. PSPEC 2.1 is
subsumed by the Management IE Portal and PSPEC 2.2 has been aggregated for
convenience.
 __ DL Management [19-Dec-1995 17:01:11]

Msg

1
2 T

F

Extract
IE Datalink
State

Execute
In Order

IE Datalink
StateManagement

IE Portal

Write:
State Construct

Msg Datalink
Disconnect
Ind

Construct
Msg Datalink
Connect Ind

Switch

== ?

TrueP Address

M Management Portal

M State

 A2-6

2.1.3. Support Modules

2.1.3.1. Construct IE Datalink Flow Control

 Construct IE Datalink Flow-Control [19-Dec-1995 17:01:32]

State IE Flow-ControlInsert Flow
Control
Released

Create IE
Datalink
Flow -Control

2.1.3.2. Construct IE Datalink State

 Construct IE Datalink State [19-Dec-1995 17:01:41]

State IE StateInsert
State

Create
IE Datalink
State

2.1.3.3. Extract IE Datalink Flow Control

 Extract IE Datalink Flow-Control [19-Dec-1995 17:03:07]

IE Flow-Control
Flow-Control

DS

F

Select Flow
Control
Released

2.1.3.4. Extract IE Datalink State

 Extract IE Datalink State [19-Dec-1995 17:03:17]

IE State
StateDS

FSelect
State

2.1.3.5. Construct Msg Datalink Connect Indication

 Construct Msg Datalink Connect Ind [19-Dec-1995 17:01:51]

Trigger MsgCreate Msg
Datalink
Connect Indication

2.1.3.6. Construct Msg Datalink Data Request

 Construct Msg Datalink Data Req [19-Dec-1995 17:02:15]

Msg

Msg Data Req

DS
F I+

Iconst

Select
Length

Insert
Content

Insert
Creation
Time

Insert
Length

Create Msg
Datalink
Data Request

TNow

P Datalink Header Length

 A2-7

2.1.3.7. Construct Msg Datalink Disconnect Indication

 Construct Msg Datalink Disconnect Ind [19-Dec-1995 17:02:26]

Trigger MsgCreate Msg
Datalink Disconnect
Indication

2.1.3.8. Construct Msg Datalink Status Indication

 Construct Msg Datalink Status Ind [19-Dec-1995 17:02:38]

IE Status MsgInsert
Content

Create Msg
Datalink
Status Indication

2.1.3.9. Convert Msg Datalink Data Request to Indication

 Convert Msg Datalink Data Req To Ind [19-Dec-1995 17:02:49]

Req Msg Ind MsgCoerce to
Msg Datalink
Data Indication

2.1.3.10. Extract Msg Datalink Data

 Extract Msg Datalink Data [19-Dec-1995 17:03:34]

Msg Input

Length

Content

Msg Output

DS
F

DS
F

DS

F
Sink

Select
Content

Select
Length

Select
Creation
Time

2.1.3.11. Extract Msg Datalink Status

 Extract Msg Datalink Status [19-Dec-1995 17:03:45]

Msg
IE Status

DS
FSelect

Content

 A2-8

2.2. Network Layer

2.2.1. Data Structures

2.2.1.1. IE Network Primitive

This Data Structure has no content.

2.2.1.2. IE Network Load-Factor

2.2.1.3. Msg Network Primitive

2.2.1.4. Msg Network Connect Primitive

2.2.1.5. Msg Network Connect Indication

2.2.1.6. Msg Network Data Primitive

2.2.1.7. Msg Network Data Indication

2.2.1.8. Msg Network Data Request

Name Type Subrange Default Value
Load Factor REAL [0.0,1.0] 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Destination Address INTEGER [0,512) 0
Hop Count INTEGER [0,256) 255
Explicit Congestion Notification INTEGER [0,+Inf) 0
Source Address INTEGER [0,512) 0
Content Msg Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Destination Address INTEGER [0,512) 0
Hop Count INTEGER [0,256) 255
Explicit Congestion Notification INTEGER [0,+Inf) 0
Source Address INTEGER [0,512) 0
Content Msg Primitive

 A2-9

2.2.1.9. Msg Network Disconnect Primitive

2.2.1.10. Msg Network Disconnect Indication

2.2.1.11. Msg Network Status Primitive

2.2.1.12. Msg Network Status Indication

2.2.2. Main Modules

2.2.2.1. Process Data Indication

This Module implements “PSPEC 1.2: Process Data Message”. Note that “DFD 1:
Process Datalink Message” has been subsumed by the Top.
 __ N Process Data-Indication [20-Dec-1995 17:48:16]

DL Msg Data Input

N Msg Data Output

1
2 T

F

M M

T
F

M

M

SAddr
DAddr
ECN
HopCnt

C
L

M
L
C
M

Execute
In Order

End System
True

== ?

Address
Switch

== ?

Convert Msg
Network Data
Req To Ind

Switch

Declare Msg
Network Data
Request

Extract
Msg Network
Data

Extract
Msg Datalink
Data

P Address
P End System

2.2.2.2. Process Connect Indication

This Module implements “PSPEC 1.3: Process Connect Message”. Note that “DFD 1:
Process Datalink Message” has been subsumed by the Top.

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Destination Address INTEGER [0,512) 0
Hop Count INTEGER [0,256) 255
Explicit Congestion Notification INTEGER [0,+Inf) 0
Source Address INTEGER [0,512) 0
Content Msg Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content IE Network

Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content IE Network

Primitive

 A2-10

 __ N Process Connect-Indication [20-Dec-1995 17:47:56]

DL Msg Connect Input

Up Indication

N Msg Connect Output

1
2

Execute
In Order

Construct
Msg Netw ork
Connect Ind

2.2.2.3. Process Disconnect Indication

This Module implements “PSPEC 1.4: Process Disconnect Message”. Note that “DFD
1: Process Datalink Message” has been subsumed by the Top.
 __ N Process Disconnect-Indication [20-Dec-1995 17:48:27]

DL Msg Disconnect Input

Down Indication

N Msg Disconnect Output
1
2Execute

In Order

Construct
Msg Network
Disconnect
Ind

2.2.2.4. Process Status Indication

This Module implements “PSPEC 1.5: Process Status Message”. Note that “DFD 1:
Process Datalink Message” has been subsumed by the Top.
 __ N Process Status-Indication [20-Dec-1995 17:48:56]

DL Msg Status Input

Release Indication
T
F

IE
C
B
A

Extract IE
Datalink
Flow-Control

Declare IE
Datalink
Flow-Control

Switch== ?

True

IE Switch
Extract
Msg Datalink
Status

2.2.2.5. Process Data Output

This Module implements “DFD 2: Encapsulate for Datalink”.
 __ N Process Data Output [20-Dec-1995 17:48:06]

N Msg Data Input

DL Msg Data Output

T
F

== ?End System

True

Switch

Address

Insert
Source
Address

Construct
Msg Datalink
Data Req

P Address

P End System

2.2.2.6. Process Load Update

This Module implements “PSPEC 4: Process Load Update”.

 __ N Process Load Update [20-Dec-1995 17:48:35]

Load N Msg StatusConstruct
Msg Netw ork
Status Ind

Construct
IE Netw ork
Load-Factor

2.2.2.7. Process Reject

 A2-11

This Module implements “PSPEC 5: Process Reject Message”.
 __ N Process Reject [20-Dec-1995 17:48:47]

N Msg Data Input N Msg Data Output
M M

T
F

End Sy stem

Conv ert Msg
Network Data
Req To Ind

True

Switch

== ?

P End Sy stem

2.2.2.8. Process Outgoing

This Module implements “DFD 3: Process Outgoing Message”.
 Process Outgoing [20-Dec-1995 17:49:08]

Release-Indication

Down-Indication

Up-Indication

N Msg Reject Throwback Load Indication N Msg Insertion

N Msg Release

Lo
ad

S
ta

tu
s

Up
Status

Msg

Up
Status

Msg

Up Status Status

Msg

Rej

Msg

Queue_InitInit
In

di
ca

te
-L

oa
d

Process-Release

Process-Down

Process-Up Process
Insert

M Queue_Number

M Wait For Release

P Queue_Discipl ine

P Queue_Length

2.2.2.9. Process Outgoing -- Process Up

This Module implements “PSPEC 3.1: Initialise Queue”.

 __ PO Process Up [20-Dec-1995 17:49:57]

Up Indication Indicate Status
Size

Queue_Reset

M Queue_Number

2.2.2.10. Process Outgoing -- Process Down

This Module implements “PSPEC 3.2: Flush Queue”.

 A2-12

 __ PO Process Down [20-Dec-1995 17:49:26]

Up Indication

Flushed Messages

Indicate Status
Failure

Success
1
2

Queue_Extract
Execute
In Order

M Queue_Number

2.2.2.11. Process Outgoing -- Process Release

This Module implements “PSPEC 3.3: Release Queue”.
 __ PO Process Release [20-Dec-1995 17:49:45]

Up Indication

Released Message

Indicate StatusFailure
Success

3
2
1

Queue_Extract Execute
In Order
3

True Write:
Wait For
Release

False

M Queue_Number

M Wait For Release

2.2.2.12. Process Outgoing -- Process Insert

This Module implements “PSPEC 3.4: Insert Queue”.
 __ PO Process Insert [20-Dec-1995 17:49:36]

Indicate Status

Inserted Message

Rejected Message

Released Message

In
Rej
Ok

12
T F

Queue_Insert

Ex
ec

ut
e

In
 O

rd
er

Write:
Wait For
Release

True

Sw
itc

h

==
 ?

W
ai

t
Fo

r R
el

ea
se

Fa
ls

e

M Queue_Number

M Wait For Release

 A2-13

2.2.2.13. Process Outgoing -- Indicate Load

This Module implements “PSPEC 3.5: Indicate Load”.

 __ PO Indicate Load [20-Dec-1995 17:49:17]

Status Indication Load Indication

Len

Size

Queue_GetLength

Queue_GetSize R/

I->R

I->R

M Queue_Number

2.2.2.14. Queue Extract

This Module acts as the interface betwen BONeS and the Queue ADT, as
implemented in ‘C’, for the extraction of a single element from the Queue associated
with the given Queue_Number.

 Queue_Extract [20-Dec-1995 17:50:09]

Get

Queue Success

Queue Failure

M Queue_Number

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Queue/BONeS_Queue_Extract.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_Queue_Extract (Get, QueueSuccess, QueueFailure, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.2.2.15. Queue Get Length

This Module acts as the interface betwen BONeS and the Queue ADT, as
implemented in ‘C’, for the extraction of the length of the Queue associated with the
given Queue_Number.

 A2-14

 Queue_GetLength [20-Dec-1995 17:50:20]

Size Queue Length

M Queue_Number

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Queue/BONeS_Queue_GetLength.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_Queue_GetLength (Size, QueueLength, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.2.2.16. Queue Get Size

This Module acts as the interface betwen BONeS and the Queue ADT, as
implemented in ‘C’, for the extraction of the current size of the Queue associated with
the given Queue_Number.

 Queue_GetSize [20-Dec-1995 17:50:28]

Size Queue Size

M Queue_Number

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Queue/BONeS_Queue_GetSize.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */

 A2-15

9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_Queue_GetSize (Size, QueueSize, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.2.2.17. Queue Insert

This Module acts as the interface betwen BONeS and the Queue ADT, as
implemented in ‘C’, for the insertion of a single element to the Queue associated with
the given Queue_Number.
 Queue_Insert [20-Dec-1995 17:50:45]

Queue Input

Queue Success

Queue Reject

M Queue_Number

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Queue/BONeS_Queue_Insert.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_Queue_Insert (QueueInput, QueueSuccess, QueueReject, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.2.2.18. Queue Reset

This Module acts as the interface betwen BONeS and the Queue ADT, as
implemented in ‘C’, to reset the Queue associated with the given Queue_Number.

 A2-16

 Queue_Reset [20-Dec-1995 17:50:54]

Reset

Queue Size

M Queue_Number

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Queue/BONeS_Queue_Reset.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_Queue_Reset (Reset, QueueSize, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.2.2.19. Queue Init

This Module acts as the interface betwen BONeS and the Queue ADT, as
implemented in ‘C’, to initialise the Queue with the given Queue_Length and
Queue_Discpline, to provide a Queue_Number.

 Queue_Init [20-Dec-1995 17:50:37]

Init
Done

P Queue_Length

M Queue_Number

P Queue_Discipline

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Queue/BONeS_Queue_Create.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11

 A2-17

12 /* User RUN Below Here */
13
14 /* -- */
15
16 BONeS_Queue_Create (argvector);
17 __FreeArc (Init);
18 __GenerateTrigger (Done);
19
20 /* -- */
21
22 /* User RUN Above Here */
23

2.2.3. Support Modules

2.2.3.1. Construct IE Network Load Factor

 Construct IE Network Load-Factor [20-Dec-1995 17:45:49]

Load IE Load-FactorInsert
Load Factor

Create IE
Netw ork
Load-Factor

2.2.3.2. Extract IE Network Load Factor

 Extract IE Network Load-Factor [20-Dec-1995 17:46:57]

IE Load LoadDS
FSelect

Load Factor

2.2.3.3. Construct Msg Network Connect Indication

 Construct Msg Network Connect Ind [20-Dec-1995 17:45:59]

Trigger MsgCreate Msg
Netw ork Connect
Indication

2.2.3.4. Construct Msg Network Disconnect Indication

 Construct Msg Network Disconnect Ind [20-Dec-1995 17:46:19]

Trigger MsgCreate Msg
Netw ork Disconnect
Indication

2.2.3.5. Construct Msg Network Status Indication

 Construct Msg Network Status Ind [20-Dec-1995 17:46:29]

IE Status MsgInsert
Content

Create Msg
Netw ork Status
Indication

2.2.3.6. Construct Msg Network Data Request

 A2-18

 Construct Msg Network Data Req [20-Dec-1995 17:46:09]

Dest Address

Msg

Msg Data Req

DS
F

Insert
Content

Insert
Dest Address

Insert
Creation
Time

Insert
Length

Create Msg
Network Data
Request

I+

Header
Length

Select
Length TNow

P Network Header Length

2.2.3.7. Convert Msg Network Data Indication to Request

 Convert Msg Network Data Ind To Req [20-Dec-1995 17:46:38]

Ind Msg Req MsgCoerce to
Msg Netw ork
Data Request

2.2.3.8. Convert Msg Network Data Request to Indication

 Convert Msg Network Data Req To Ind [20-Dec-1995 17:46:47]

Req Msg Ind MsgCoerce to
Msg Netw ork
Data Indication

2.2.3.9. Extract Msg Network Data

 Extract Msg Network Data [20-Dec-1995 17:47:06]

Msg Input

Msg Output

Source Address

Destination Address

Explicit Congestion Notification

Hop Count

Content

Length

DS

F

DS

F

DS
F

DS
F

DS
F

DS
F

DS

F

Select
Source
Address

Select Explicit
Congestion
Notif ication

Select
Hop Count

Select Destination
Address

Select
Content

Select
Length

Select
Creation
Time

2.2.3.10. Extract Msg Network Status

 A2-19

 Extract Msg Network Status [20-Dec-1995 17:47:16]

Msg
IE Status

DS
FSelect

Content

2.2.3.11. Get Msg Network Data Field : Destination Address

 Get Msg Network Data Field: DAddr [20-Dec-1995 17:47:26]

Msg Input

Msg Output

Destination AddressDS
FSelect Destination

Address

2.2.3.12. Get Msg Network Data Field : Hop Count

 Get Msg Network Data Field: Hop Count [20-Dec-1995 17:47:35]

Msg Input

Msg Output

Hop CountDS
FSelect

Hop Count

2.2.3.13. Set Msg Network Data Field : Hop Count

 Set Msg Network Data Field: Hop Count [20-Dec-1995 17:47:45]

Hop Count

Msg Input Msg OutputInsert
Hop Count

2.2.4. ‘C’ Modules

The ‘C’ Modules for the Queue consist of top level interface functions that use lower
level Queue Primitives and a Queue Table.

2.2.4.1. BONeS Queue Create (Init)

1
2 /* -- */
3 /* $Id: BONeS_Queue_Create.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: BONeS_Queue_Create.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 # define DECLARE_MAIN_VARIABLES
13 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
14 /* -- */

 A2-20

15

 A2-21

93 char * String;
94 {
95 char * Token;

16 /* ParseTable
17 |
18 | The ParseEntry and ParseTable are used to contain items that can
19 | be specified as options for the queue.
20 */
21 typedef struct _ParseEntry_ST
22 {
23 char * Token;
24 int Options;
25 } _ParseEntry;
26
27 static _ParseEntry _ParseTable[] =
28 {
29 { "droptail", QUEUE_OPT_DROPTAIL },
30 { "droprandom", QUEUE_OPT_DROPRANDOM },
31 { "red", QUEUE_OPT_RED },
32 { "priosize", QUEUE_OPT_PRIOSIZE },
33 { "prioclass", QUEUE_OPT_PRIOCLASS },
34 { "addrqueue", QUEUE_OPT_ADDRESS },
35 { "default", QUEUE_OPT_DEFAULT },
36 };
37
38 #define _PARSE_TABLE_SZ (sizeof (_ParseTable) / sizeof (_ParseEntry))
39
40 /* -- */
41
42 /* _toupper
43 |
44 | covert the passed character to upper case.
45 */
46 static char _toupper (ch)
47 char ch;
48 {
49 return (ch >= 'a' && ch <= 'z') ? (ch - 'a' + 'A') : ch;
50 }
51
52 /* -- */
53
54 /* _isspace
55 |
56 | is the passed character a whitespace ?
57 */
58 static char _isspace (ch)
59 char ch;
60 {
61 return (ch == ' ' || ch == '\t' || ch == ',' || ch == ':' || ch == ';');
62 }
63
64 /* -- */
65
66 /* _strcasecmp
67 |
68 | string compare without considering case
69 */
70 static int _strcasecmp (StringA, StringB)
71 char * StringA;
72 char * StringB;
73 {
74 while (_toupper (*StringA) == _toupper (*StringB))
75 {
76 if (*StringA == '\0')
77 return 0;
78
79 StringA++; StringB++;
80 }
81 return 1;
82 }
83
84 /* -- */
85
86 /* _ParseOptions
87 |
88 | Using the given table of option keywords, attempt to decompose
89 | a given string into a set of flags; noting that there is no
90 | semantic check here at all, it's all syntactic.
91 */
92 static int _ParseOptions (String)

96 int Options = 0;

 A2-22

12 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
13 /* -- */
14

97 int Index;
98
99 while (*String != '\0')
100 {
101 /* SKIP WHITESPACE */
102 while (_isspace (*String) && *String != '\0')
103 String++;
104 if (*String == '\0')
105 break;
106
107 /* EXTRACT TOKEN */
108 Token = String;
109 while (!_isspace (*String) && *String != '\0')
110 String++;
111 if (*String != '\0')
112 *String++ = '\0';
113
114 /* PARSE TOKEN */
115 for (Index = 0; Index < _PARSE_TABLE_SZ &&
116 _strcasecmp (Token, _ParseTable[Index].Token) != 0; Index++)
117 ;
118
119 if (Index < _PARSE_TABLE_SZ)
120 Options |= _ParseTable[Index].Options;
121 }
122
123 return (Options == 0) ? QUEUE_OPT_DEFAULT : Options;
124 }
125
126 /* -- */
127
128 /* BONeS_Queue_Create
129 |
130 | This is where we instantiate the queue for a specific use; what
131 | occurs is that a string that has the discipline options is parsed
132 | to determine the flags that will be used with this queue. Then we
133 | allocate an entry in the table and set up the appropriate mapping.
134 */
135 static void BONeS_Queue_Create (argvector)
136 arg_ptr argvector;
137 {
138 char * OptionsString = __GetSTRINGVal (Queue_Discipline_arc);
139 int _Options = _ParseOptions (OptionsString);
140 int _Length = __GetINTEGERVal (Queue_Length_arc);
141 int QIndex = QueueTableAlloc (_Length, _Options);
142
143 if (QIndex < 0 || QIndex >= QUEUE_TABLE_SZ)
144 {
145 __ReportError (MODULE_NAMESTRING, "Queue Alloc failed!");
146 QIndex = QUEUE_TABLE_SZ;
147 }
148
149 __PutINTEGERVal (Queue_Number_arc, QIndex);
150 __Bfree (OptionsString);
151 }
152
153 /* -- */
154

2.2.4.2. BONeS Queue Destroy (Init)

1
2 /* -- */
3 /* $Id: BONeS_Queue_Destroy.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: BONeS_Queue_Destroy.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */

15 /* _BONeS_Queue_Destroy

 A2-23

50 /* -- */
51
52 /* _Get_Src_Address

16 |
17 | Destroy the queue by removing its mapping and invalidating the
18 | index that we maintain for it.
19 */
20 static void BONeS_Queue_Destroy (argvector)
21 arg_ptr argvector;
22 {
23 int QIndex = __GetINTEGERVal (Queue_Number_arc);
24 QueueEntry * QEntry = &QueueTable[QIndex];
25
26 if (QIndex < QUEUE_TABLE_SZ && QEntry->Allocated == TRUE)
27 {
28 QueueTableFree (QIndex);
29 }
30
31 __PutINTEGERVal (Queue_Number_arc, QUEUE_TABLE_SZ);
32 }
33
34 /* -- */
35

2.2.4.3. BONeS Queue Extract

1
2 /* -- */
3 /* $Id: BONeS_Queue_Extract.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: BONeS_Queue_Extract.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
13 /* -- */
14
15 # define SIZE_THRESHOLD 128
16
17 /* -- */
18
19 static int _fh_Initialised = 0;
20 static field_handle _fh_Length;
21 static field_handle _fh_SourceAddress;
22 static field_handle _fh_DestAddress;
23 #ifdef CLASS_PRIORITY
24 static field_handle _fh_Class;
25 #endif
26 static type_handle _th_Msg_Network_Data;
27
28 /* -- */
29
30 /* _fh_Initialise
31 |
32 | Initialise the Field and Type handles for use with this module.
33 */
34 static void _fh_Initialise ()
35 {
36 if (_fh_Initialised != 0)
37 return;
38 _fh_Initialised = 1;
39 _th_Msg_Network_Data = __GetTypeHandleId (MsgNetworkDataRequest);
40 _fh_Length = __GetFldHandleId (_th_Msg_Network_Data, Field_Length);
41 _fh_SourceAddress = __GetFldHandleId (_th_Msg_Network_Data,
42 Field_SourceAddress);
43 _fh_DestAddress = __GetFldHandleId (_th_Msg_Network_Data,
44 Field_DestAddress);
45 #ifdef CLASS_PRIORITY
46 _fh_Class = __GetFldHandleId (_th_Msg_Network_Data, Field_Class);
47 #endif
48 }
49

53 |

 A2-24

131 Size = QueueSize (QEntry->Que);
132 CmpAddress = -1;
133 MinAddress = -1;

54 | Return the address (Source Address) of a BONeS message.
55 */
56 static int _Get_Src_Address (Msg)
57 arc_ptr Msg;
58 {
59 if (_fh_Initialised == 0)
60 _fh_Initialise ();
61 return __GetINTEGERFldVal (Msg, _fh_SourceAddress);
62 }
63
64 /* -- */
65
66 /* _Get_Dst_Address
67 |
68 | Return the address (Dest Address) of a BONeS message.
69 */
70 static int _Get_Dst_Address (Msg)
71 arc_ptr Msg;
72 {
73 if (_fh_Initialised == 0)
74 _fh_Initialise ();
75 return __GetINTEGERFldVal (Msg, _fh_DestAddress);
76 }
77
78 /* -- */
79
80 /* _Get_Size
81 |
82 | Return the size (Length) of a BONeS message.
83 */
84 static int _Get_Size (Msg)
85 arc_ptr Msg;
86 {
87 if (_fh_Initialised == 0)
88 _fh_Initialise ();
89 return __GetINTEGERFldVal (Msg, _fh_Length);
90 }
91
92 /* -- */
93
94 #ifdef CLASS_PRIORITY
95 /* _Get_Class
96 |
97 | Return the class (Class) of a BONeS message.
98 */
99 static int _Get_Class (Msg)
100 arc_ptr Msg;
101 {
102 if (_fh_Initialised == 0)
103 _fh_Initialise ();
104 return __GetINTEGERFldVal (Msg, _fh_Class);
105 }
106 #endif
107
108 /* -- */
109
110 /* _Filter_On_Address
111 |
112 | Attempt to extract a message with the next address after the
113 | previous message. What we do is extract a message, and store
114 | its address, then on the next time around, we try for the one
115 | following this. The strategy is thus: iterate through the
116 | queue and examine the addresses to find either one greater, or
117 | the lowest one. The filter then turns off any that are not
118 | applicable.
119 */
120 static void _Filter_On_Address (QEntry, FilterArray, FilterLength)
121 QueueEntry * QEntry;
122 int * FilterArray;
123 int FilterLength;
124 {
125 int Index;
126 int Address;
127 int CmpAddress;
128 int MinAddress;
129 int Size;
130

134

 A2-25

212 /* Nothing */
213 }
214

135 for (Index = 0; Index < Size && Index < FilterLength; Index++)
136 {
137 Address = _Get_Src_Address (QueuePeekElement (QEntry->Que, Index));
138
139 if (CmpAddress == -1 ||
140 (Address < CmpAddress && CmpAddress > QEntry->Ext_AddressLast))
141 CmpAddress = Address;
142
143 if (MinAddress == -1 || Address < MinAddress)
144 MinAddress = Address;
145 }
146
147 Address = (CmpAddress == -1) ? MinAddress : CmpAddress;
148
149 for (Index = 0; Index < Size && Index < FilterLength; Index++)
150 {
151 if (_Get_Src_Address (QueuePeekElement (QEntry->Que, Index)) != Address)
152 {
153 FilterArray[Index] = FALSE;
154 }
155 }
156 }
157
158 /* -- */
159
160 /* _Filter_On_Size
161 |
162 | This filter attempts to alternatively extract Short and Long
163 | packets the other side of a specified threshold; the purpose
164 | mainly is to allow interactive packets to have a slight priority
165 | (and ack packets as well!!) over bulk data packets. We do need
166 | to alternate otherwise we could starve the big packets. The
167 | strategy is thus:
168 | Iterate through all the entirse and look at the size of
169 | each entry, if the size is in the same threshold direction
170 | as the last entry, then do remove that entry.
171 | There are still some small questions about this policy, i.e.
172 | it is not entirely fair all the time ...
173 |
174 */
175 static void _Filter_On_Size (QEntry, FilterArray, FilterLength)
176 QueueEntry * QEntry;
177 int * FilterArray;
178 int FilterLength;
179 {
180 int Index;
181 int Size;
182
183 Size = QueueSize (QEntry->Que);
184 for (Index = 0; Index < Size && Index < FilterLength; Index++)
185 {
186 int Length = _Get_Size (QueuePeekElement (QEntry->Que, Index));
187
188 if (QEntry->Ext_SizeLast < SIZE_THRESHOLD && Length < SIZE_THRESHOLD)
189 {
190 FilterArray[Index] = FALSE;
191 }
192 else if (QEntry->Ext_SizeLast >= SIZE_THRESHOLD &&
193 Length >= SIZE_THRESHOLD)
194 {
195 FilterArray[Index] = FALSE;
196 }
197
198 }
199 }
200
201 /* -- */
202
203 /* _Filter_On_Class
204 |
205 | Not implemented.
206 */
207 static void _Filter_On_Class (QEntry, FilterArray, FilterLength)
208 QueueEntry * QEntry;
209 int * FilterArray;
210 int FilterLength;
211 {

215 /* -- */

 A2-26

293 if (QueueSize (QEntry->Que) == 0)
294 {
295 __GenerateTrigger (Failure);

216
217 /* _Extract_Msg
218 |
219 | To support the different extraction mechanisms, what we do is set
220 | up an array to hold a flag for each entry that there is in the
221 | queue, and then we go off and filter through all the possible
222 | options, only keeping the flags turned on for those that satisfy
223 | each one. At the end, we select the first one that is available,
224 | or just go straight for the head if we have an otherwise nomatch.
225 */
226 static void _Extract_Msg (QEntry, Success, Failure)
227 QueueEntry * QEntry;
228 arc_ptr Success;
229 arc_ptr Failure;
230 {
231 char * FilterArray;
232 int FilterLength;
233 int Index;
234
235 FilterLength = QueueLength (QEntry->Que);
236 FilterArray = (char *) __Balloc (sizeof (char) * FilterLength, "FArray");
237 for (Index = 0; Index < FilterLength; Index++)
238 FilterArray[Index] = TRUE;
239
240 if (QEntry->Options & QUEUE_OPT_ADDRESS)
241 _Filter_On_Address (QEntry, FilterArray, FilterLength);
242
243 if (QEntry->Options & QUEUE_OPT_PRIOSIZE)
244 _Filter_On_Size (QEntry, FilterArray, FilterLength);
245
246 if (QEntry->Options & QUEUE_OPT_PRIOCLASS)
247 _Filter_On_Class (QEntry, FilterArray, FilterLength);
248
249 for (Index = 0; Index < FilterLength && FilterArray[Index]== FALSE; Index++)
250 ;
251
252 if (Index < FilterLength)
253 {
254 arc_ptr arc = QueueGetElement (QEntry->Que, Index);
255 __CopyArc (arc, Success);
256 __FreeArc (arc);
257 __Bfree ((char *)arc);
258 }
259 else
260 {
261 arc_ptr arc = QueueGetHead (QEntry->Que);
262 __CopyArc (arc, Success);
263 __FreeArc (arc);
264 __Bfree ((char *)arc);
265 }
266
267 QEntry->Ext_AddressLast = _Get_Address (Success);
268 QEntry->Ext_SizeLast = _Get_Size (Success);
269
270 __Bfree (FilterArray);
271 }
272
273 /* -- */
274
275 /* BONeS_Queue_Extract
276 |
277 | Extract the next entry from the Queue using whatever discipline
278 | we have specified. This amounts to first ensuring that we do
279 | have something in the queue as a precondition to carrying out
280 | the extraction.
281 */
282 static void BONeS_Queue_Extract (InTrigger, Success, Failure, argvector)
283 arc_ptr InTrigger;
284 arc_ptr Success;
285 arc_ptr Failure;
286 arg_ptr argvector;
287 {
288 int QIndex = __GetINTEGERVal (Queue_Number_arc);
289 QueueEntry * QEntry = &QueueTable[QIndex];
290
291 if (QIndex < QUEUE_TABLE_SZ && QEntry->Allocated == TRUE)
292 {

296 }

 A2-27

59 | and then placing the input message onto the end of the queue. Note
60 | that both FAILURE and SUCCESS outputs can be enabled.
61 */

297 else
298 {
299 _Extract_Msg (QEntry, Success, Failure);
300 }
301 }
302
303 __FreeArc (InTrigger);
304 }
305
306 /* -- */
307

2.2.4.4. BONeS Queue Insert

1
2 /* -- */
3 /* $Id: BONeS_Queue_Insert.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: BONeS_Queue_Insert.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
13 /* -- */
14
15 /* _Arc_Clone
16 |
17 | Make a copy of the passed arc, and return it.
18 */
19 static arc_ptr _Arc_Clone (arc)
20 arc_ptr arc;
21 {
22 arc_ptr clone = (arc_ptr) __Balloc (sizeof (arc_t), "Arc");
23 clone->enable = 0;
24 __CopyArc (arc, clone);
25 return clone;
26 }
27
28 /* -- */
29
30 /* _Insert_DropTail
31 |
32 | Insert a message into the queue using a DROP TAIL policy; this
33 | amounts to simply dropping the input message if the queue is
34 | already full.
35 */
36 static void _Insert_DropTail (QEntry, Msg, Success, Failure)
37 QueueEntry * QEntry;
38 arc_ptr Msg;
39 arc_ptr Success;
40 arc_ptr Failure;
41 {
42 if (QueueSize (QEntry->Que) < QueueLength (QEntry->Que))
43 {
44 QueueInsert (QEntry->Que, _Arc_Clone (Msg));
45 __GenerateTrigger (Success);
46 }
47 else
48 {
49 __CopyArc (Msg, Failure);
50 }
51 }
52
53 /* -- */
54
55 /* _Insert_DropRandom
56 |
57 | Insert a message into the queue using the DROP RANDOM policy; this
58 | amounts to dropping a random entry if the queue is already full,

62 static void _Insert_DropRandom (QEntry, Msg, Success, Failure)
63 QueueEntry * QEntry;
64 arc_ptr Msg;
65 arc_ptr Success;
66 arc_ptr Failure;
67 {
68 if (QueueSize (QEntry->Que) >= QueueLength (QEntry->Que))
69 {
70 QueueIndex QOffset = _UNIFORM (0, QueueSize (QEntry->Que));
71 arc_ptr arc = QueueGetElement (QEntry->Que, QOffset);
72
73 __CopyArc (arc, Failure);
74 __FreeArc (arc);
75 __Bfree ((char *)arc);
76 }
77
78 QueueInsert (QEntry->Que, _Arc_Clone (Msg));
79 __GenerateTrigger (Success);
80 }
81
82 /* -- */
83
84 /* _Insert_RED
85 |
86 */
87 static void _Insert_RED (QEntry, Msg, Success, Failure)
88 QueueEntry * QEntry;
89 arc_ptr Msg;
90 arc_ptr Success;
91 arc_ptr Failure;
92 {
93 __CopyArc (Msg, Failure);
94 }
95
96 /* -- */
97
98 /* BONeS_Queue_Insert
99 |
100 | Insert a message into the queue, what we do is locate the specific
101 | policy that is being used and then ask it to carry out the
102 | insertion.
103 */
104 static void BONeS_Queue_Insert (Msg, Success, Failure, argvector)
105 arc_ptr Msg;
106 arc_ptr Success;
107 arc_ptr Failure;
108 arg_ptr argvector;
109 {
110 int QIndex = __GetINTEGERVal (Queue_Number_arc);
111 QueueEntry * QEntry = &QueueTable[QIndex];
112
113 if (QIndex < QUEUE_TABLE_SZ && QEntry->Allocated == TRUE)
114 {
115 if (QEntry->Options & QUEUE_OPT_DROPTAIL)
116 {
117 _Insert_DropTail (QEntry, Msg, Success, Failure);
118 }
119 else if (QEntry->Options & QUEUE_OPT_DROPRANDOM)
120 {
121 _Insert_DropRandom (QEntry, Msg, Success, Failure);
122 }
123 else if (QEntry->Options & QUEUE_OPT_RED)
124 {
125 _Insert_RED (QEntry, Msg, Success, Failure);
126 }
127 else
128 {
129 __CopyArc (Msg, Failure);
130 }
131 }
132
133 __FreeArc (Msg);
134 }
135
136 /* -- */
137

 A2-28

2.2.4.5. BONeS Queue Get Length

 A2-29

32
33 __FreeArc (InTrigger);
34 }

1
2 /* -- */
3 /* $Id: BONeS_Queue_GetLength.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: BONeS_Queue_GetLength.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
13 /* -- */
14
15 /* BONeS_Queue_GetLength
16 |
17 | Get the length of a specific queue; i.e. the fixed length, not
18 | the number of elements that are contained in the queue at a
19 | particular time.
20 */
21 static void BONeS_Queue_GetLength (InTrigger, Length, argvector)
22 arc_ptr InTrigger;
23 arc_ptr Length;
24 arg_ptr argvector;
25 {
26 int QIndex = __GetINTEGERVal (Queue_Number_arc);
27 QueueEntry * QEntry = &QueueTable[QIndex];
28
29 if (QIndex < QUEUE_TABLE_SZ && QEntry->Allocated == TRUE)
30 {
31 __PutINTEGERVal (Length, QueueLength (QEntry->Que));
32 }
33
34 __FreeArc (InTrigger);
35 }
36
37 /* -- */
38

2.2.4.6. BONeS Queue Get Size

1
2 /* -- */
3 /* $Id: BONeS_Queue_GetSize.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: BONeS_Queue_GetSize.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
13 /* -- */
14
15 /* BONeS_Queue_GetSize
16 |
17 | Get the size of a queue; i.e. the current number of elements
18 | that are contained within the queue.
19 */
20 static void BONeS_Queue_GetSize (InTrigger, Size, argvector)
21 arc_ptr InTrigger;
22 arc_ptr Size;
23 arg_ptr argvector;
24 {
25 int QIndex = __GetINTEGERVal (Queue_Number_arc);
26 QueueEntry * QEntry = &QueueTable[QIndex];
27
28 if (QIndex < QUEUE_TABLE_SZ && QEntry->Allocated == TRUE)
29 {
30 __PutINTEGERVal (Size, QueueSize (QEntry->Que));
31 }

35
36 /* -- */
37

2.2.4.7. BONeS Queue Reset

1
2 /* -- */
3 /* $Id: BONeS_Queue_Reset.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: BONeS_Queue_Reset.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
13 /* -- */
14
15 /* BONeS_Queue_Reset
16 |
17 | Reset the queue by killing all contents; we extract each item
18 | and free then kill it.
19 */
20 static void BONeS_Queue_Reset (InTrigger, OutSize, argvector)
21 arc_ptr InTrigger;
22 arc_ptr OutSize;
23 arg_ptr argvector;
24 {
25 int QIndex = __GetINTEGERVal (Queue_Number_arc);
26 QueueEntry * QEntry = &QueueTable[QIndex];
27
28 if (QIndex < QUEUE_TABLE_SZ && QEntry->Allocated == TRUE)
29 {
30 arc_ptr arc;
31
32 while ((arc = QueueGetHead (QEntry->Que)) != NULL)
33 {
34 __FreeArc (arc);
35 __Bfree ((char *)arc);
36 }
37 }
38
39 __FreeArc (InTrigger);
40 __PutINTEGERVal (OutSize, 0);
41 }
42
43 /* -- */
44

2.2.4.8. BONeS Queue (Primitive)

1
2 /* -- */
3 /* $Id: Queue.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: Queue.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 # include "/u/mgream/BONeS/Constructed/Queue/q_primitives.c"
13 # include "/u/mgream/BONeS/Constructed/Queue/q_table.c"
14 /* -- */
15

 A2-30

2.2.4.8.1. Primitives

 A2-31

75 # endif
76 #endif
77

1
2 /* -- */
3 /* $Id: q_primitives.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: q_primitives.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 #ifdef TEST
12
13 # include <stdio.h>
14 # include <stdlib.h>
15 # include <string.h>
16 # include <assert.h>
17
18 # define _MALLOC(s,id) malloc (s)
19 # define _FREE(p) free (p)
20
21 # define _HANDLE char *
22 # define _HANDLE_DESTROY(x) if ((x) != NULL) { _FREE (x); (x) = NULL; }
23
24 #else
25
26 # define assert(x)
27 # define _MALLOC(s,id) __Balloc (s, id)
28 # define _FREE(p) __Bfree ((char *)p)
29
30 # define _HANDLE arc_ptr
31 # define _HANDLE_DESTROY(x) if ((x) != NULL) \
32 { \
33 __FreeArc (x); \
34 __Bfree ((char*)x); \
35 (x) = NULL; \
36 }
37 #endif
38
39 /* -- */
40
41 typedef int Boolean;
42
43 # define FALSE (0)
44 # define TRUE (1)
45
46 /* -- */
47
48 typedef struct QueueItem_ST
49 {
50 struct QueueItem_ST * Next;
51 Boolean Allocated;
52 _HANDLE Handle;
53 } QueueItem;
54
55 /* -- */
56
57 typedef int QueueIndex;
58
59 /* -- */
60
61 typedef struct Queue_ST
62 {
63 QueueIndex Length;
64 QueueItem * _Pool;
65 QueueItem * Head;
66 } Queue;
67
68 /* -- */
69
70 #ifndef P
71 # ifdef ANSIC
72 # define P(x) x
73 # else
74 # define P(x) ()

78 static QueueItem * QueuePoolCapture P ((Queue * Que));

 A2-32

156 while ((Handle = QueueGetHead (Que)) != NULL)
157 {
158 _HANDLE_DESTROY (Handle);

79 static void QueuePoolRelease P ((Queue * Que, QueueItem * QItem));
80 static Queue * QueueCreate P ((QueueIndex Length));
81 static void QueueDestroy P ((Queue * Que));
82 static QueueIndex QueueLength P ((Queue * Que));
83 static QueueIndex QueueSize P ((Queue * Que));
84 static _HANDLE QueueGetHead P ((Queue * Que));
85 static _HANDLE QueueGetElement P ((Queue * Que, QueueIndex QOffset));
86 static _HANDLE QueuePeekElement P ((Queue * Que, QueueIndex QOffset));
87 static Boolean QueueInsert P ((Queue * Que, _HANDLE Handle));
88
89 /* -- */
90
91 static QueueItem * QueuePoolCapture (Que)
92 Queue * Que;
93 {
94 QueueIndex QIndex;
95
96 for (QIndex = 0; QIndex < Que->Length; QIndex++)
97 {
98 if (Que->_Pool[QIndex].Allocated == FALSE)
99 {
100 QueueItem * QItem = &Que->_Pool[QIndex];
101
102 QItem->Allocated = TRUE;
103 QItem->Next = NULL;
104 QItem->Handle = NULL;
105
106 return QItem;
107 }
108 }
109 return NULL;
110 }
111
112 /* -- */
113
114 static void QueuePoolRelease (Que, QItem)
115 Queue * Que;
116 QueueItem * QItem;
117 {
118 if (QItem->Handle != NULL)
119 {
120 _HANDLE_DESTROY (QItem->Handle);
121 }
122
123 QItem->Allocated = FALSE;
124 }
125
126 /* -- */
127
128 static Queue * QueueCreate (Length)
129 QueueIndex Length;
130 {
131 QueueIndex QIndex;
132 Queue * Que;
133
134 Que = (Queue *) _MALLOC (sizeof (Queue), "Queue Context");
135 Que->Length = Length;
136 Que->Head = NULL;
137 Que->_Pool = (QueueItem *) _MALLOC (sizeof (QueueItem) * Length,
138 "Queue Pool");
139
140 for (QIndex = 0; QIndex < Length; QIndex++)
141 {
142 QueueItem * QItem = &Que->_Pool[QIndex];
143 QItem->Allocated = FALSE;
144 }
145
146 return Que;
147 }
148
149 /* -- */
150
151 static void QueueDestroy (Que)
152 Queue * Que;
153 {
154 _HANDLE Handle;
155

159 }

 A2-33

237
238 static _HANDLE QueuePeekElement (Que, QOffset)
239 Queue * Que;

160
161 _FREE (Que);
162 }
163
164 /* -- */
165
166 static QueueIndex QueueLength (Que)
167 Queue * Que;
168 {
169 return Que->Length;
170 }
171
172 /* -- */
173
174 static QueueIndex QueueSize (Que)
175 Queue * Que;
176 {
177 QueueItem * QItem;
178 int QSize = 0;
179
180 for (QItem = Que->Head; QItem != NULL; QItem = QItem->Next)
181 QSize++;
182
183 return QSize;
184 }
185
186 /* -- */
187
188 static _HANDLE QueueGetHead (Que)
189 Queue * Que;
190 {
191 _HANDLE Handle = NULL;
192
193 if (Que->Head != NULL)
194 {
195 QueueItem * QItem = Que->Head;
196
197 Handle = QItem->Handle;
198 QItem->Handle = NULL;
199 Que->Head = QItem->Next;
200
201 QueuePoolRelease (Que, QItem);
202 }
203
204 return Handle;
205 }
206
207 /* -- */
208
209 static _HANDLE QueueGetElement (Que, QOffset)
210 Queue * Que;
211 QueueIndex QOffset;
212 {
213 QueueItem * QItem = Que->Head;
214 QueueItem * QPrev = NULL;
215 QueueIndex QIndex;
216 _HANDLE Handle = NULL;
217
218 for (QIndex = 0; QItem != NULL && QIndex < QOffset; QIndex++)
219 QPrev = QItem, QItem = QItem->Next;
220
221 if (QItem == NULL)
222 return NULL;
223
224 if (QPrev == NULL)
225 Que->Head = QItem->Next;
226 else
227 QPrev->Next = QItem->Next;
228
229 Handle = QItem->Handle;
230 QItem->Handle = NULL;
231 QueuePoolRelease (Que, QItem);
232
233 return Handle;
234 }
235
236 /* -- */

240 QueueIndex QOffset;
241 {
242 QueueItem * QItem = Que->Head;
243 QueueIndex QIndex;
244
245 for (QIndex = 0; QItem != NULL && QIndex < QOffset; QIndex++)
246 QItem = QItem->Next;
247
248 if (QItem == NULL)
249 return NULL;
250
251 return QItem->Handle;
252 }
253
254 /* -- */
255
256 static Boolean QueueInsert (Que, Handle)
257 Queue * Que;
258 _HANDLE Handle;
259 {
260 QueueItem * QItem = QueuePoolCapture (Que);
261 if (QItem == NULL)
262 return FALSE;
263
264 QItem->Handle = Handle;
265 QItem->Next = NULL;
266
267 if (Que->Head == NULL)
268 {
269 Que->Head = QItem;
270 }
271 else
272 {
273 QueueItem * QInsert = Que->Head;
274
275 while (QInsert->Next != NULL)
276 QInsert = QInsert->Next;
277
278 QInsert->Next = QItem;
279 }
280
281 return TRUE;
282 }
283
284 /* -- */
285
286 #ifdef TEST
287
288 void main (argc, argv)
289 int argc;
290 char ** argv;
291 {
292 Queue * Que;
293 char String[100];
294 QueueIndex QIndex;
295
296 Que = QueueCreate (100);
297 printf ("Length = %u, Size = %u\n", QueueLength (Que), QueueSize (Que));
298 for (QIndex = 0; QIndex < 105; QIndex++)
299 {
300 sprintf (String, "This is a Test! Iteration %d", QIndex);
301 if (QueueInsert (Que, strdup (String)) == FALSE)
302 printf ("Insert: failed at %u\n", QIndex);
303 }
304 printf ("Length = %u, Size = %u\n", QueueLength (Que), QueueSize (Que));
305 printf ("Head = %s\n", QueueGetHead (Que));
306 printf ("Head = %s\n", QueueGetHead (Que));
307 printf ("Head = %s\n", QueueGetHead (Que));
308 QueueDestroy (Que);
309 }
310
311 #endif
312
313 /* -- */
314

 A2-34

2.2.4.8.2. Table

 A2-35

78 {
79 QueueTableInitialised = 1;
80 for (QIndex = 0; QIndex < QUEUE_TABLE_SZ; QIndex++)

1
2 /* -- */
3 /* $Id: q_table.c,v 1.1 1995/10/10 07:32:25 mgream Exp $
4 * $Log: q_table.c,v $
5 * Revision 1.1 1995/10/10 07:32:25 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* These are the different types of options that we can have:
12 | DROPTAIL -- use input policy of drop tail.
13 | DROPRANDOM -- use input policy of random drop.
14 | RED -- use input policy of random early detection.
15 | PRIOSIZE -- use output policy of size priority.
16 | PRIOCLASS -- use output policy of class priority.
17 | ADDRESS -- use output policy of round robin address based fair
18 | queueing.
19 */
20
21 # define QUEUE_OPT_DROPTAIL (1 << 0)
22 # define QUEUE_OPT_DROPRANDOM (1 << 1)
23 # define QUEUE_OPT_RED (1 << 2)
24 # define QUEUE_OPT_PRIOSIZE (1 << 3)
25 # define QUEUE_OPT_PRIOCLASS (1 << 4)
26 # define QUEUE_OPT_ADDRESS (1 << 5)
27
28 # define QUEUE_OPT_DEFAULT (QUEUE_OPT_DROPTAIL)
29
30 /* -- */
31
32 /* QueueEntry
33 |
34 | The instance data structure for each queue; contains the queue
35 | itself along with information about options and so on.
36 */
37 typedef struct QueueEntry_ST
38 {
39 Boolean Allocated;
40 int Options;
41 /* Space for Policy Context Data */
42 /* Space for Extract Context Data */
43 int Ext_AddressLast;
44 int Ext_SizeLast;
45 Queue * Que;
46 } QueueEntry;
47
48 /* -- */
49
50 #ifdef DECLARE_MAIN_VARIABLES
51 # define _SCOPE
52 #else
53 # define _SCOPE extern
54 #endif
55
56 # define QUEUE_TABLE_SZ 1024
57
58 _SCOPE QueueEntry QueueTable[QUEUE_TABLE_SZ];
59 _SCOPE int QueueTableInitialised
60 #ifdef DECLARE_MAIN_VARIABLES
61 = 0;
62 #else
63 ;
64 #endif
65
66 /* -- */
67
68 /* QueueTableAlloc
69 |
70 | Allocate a Queue Entry and place it into the table with all the
71 | appropriate setup details; return the index.
72 */
73 static int QueueTableAlloc (QueueIndex Length, int Options)
74 {
75 int QIndex;
76
77 if (QueueTableInitialised == 0)

81 QueueTable[QIndex].Allocated = FALSE;
82 }
83
84 for (QIndex = 0; QueueTable[QIndex].Allocated == TRUE &&
85 QIndex < QUEUE_TABLE_SZ; QIndex++)
86 ;
87
88 if (QIndex < QUEUE_TABLE_SZ)
89 {
90 QueueEntry * QEntry = &QueueTable[QIndex];
91
92 QEntry->Allocated = TRUE;
93 QEntry->Options = Options;
94 QEntry->Ext_AddressLast = 0;
95 QEntry->Ext_SizeLast = 0;
96 QEntry->Que = QueueCreate (Length);
97 }
98
99 return QIndex;
100 }
101
102 /* -- */
103
104 /* QueueTableFree
105 |
106 | Free up the specified entry.
107 */
108 static void QueueTableFree (int QIndex)
109 {
110 QueueEntry * QEntry = &QueueTable[QIndex];
111
112 if (QEntry->Allocated == TRUE)
113 {
114 QEntry->Allocated = FALSE;
115
116 QueueDestroy (QEntry->Que);
117 }
118 }
119
120 /* -- */
121

 A2-36

 A2-37

Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

2.3. Transport Layer

2.3.1. Data Structures

2.3.1.1. IE Transport Primitive

This Data Structure has no content.

2.3.1.2. IE Transport Parameters

2.3.1.3. Msg Transport Primitive

2.3.1.4. Msg Transport Connect Primitive

2.3.1.5. Msg Transport Connect Request

2.3.1.6. Msg Transport Data Primitive

2.3.1.7. Msg Transport Data Indication

2.3.1.8. Msg Transport Data Request

2.3.1.9. Msg Transport Disconnect Primitive

Name Type Subrange Default Value
Initial Sequence Number INTEGER (-Inf,+Inf) 37089

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Address INTEGER [0,512) 0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Address INTEGER [0,512) 0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content Msg Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content Msg Primitive

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Content Msg Primitive

Name Type Subrange Default Value

2.3.1.10. Msg Transport Disconnect Request

2.3.1.11. Msg Transport TCP

2.3.2. Main Modules

2.3.2.1. Connection Manager

This Module implements “DFD 1: Connection Manager”.

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Seq INTEGER (-Inf,+Inf) 0
Ack INTEGER (-Inf,+Inf) 0
Win INTEGER (-Inf,+Inf) 0
Flag--Ack Boolean False
T_Now INTEGER (-Inf,+Inf) 0
T_Recent INTEGER (-Inf,+Inf) 0
Flag--Timestamp Boolean False

 Connection Manager [21-Dec-1995 21:25:53]

T-Msg Input

Quench

Stop

Start

N-Msg Input

Stop

Start

M
sg

D C B A
DCBA

M
sg

Process
Transport
Disconnect

Process
Transport
Connect

Process
Netw ork
Status

Process
Netw ork
Disconnect

Process
Netw ork
Connect

Declare
T-Disc-Req

Declare
T-Conn-Req

Declare
N-Status-Ind

Declare
N-Disc-Ind

Declare
N-Conn-Ind

C
la

ss
ify

Tr
an

sp
or

t
M

es
sa

ge

C
la

ss
ify

N
et

w
or

k
M

es
sa

ge

M State

M Destination Address

 A2-38

2.3.2.2. Connection Manager -- Process Network Connect

This Module implements “PSPEC 1.2: Process Network Connect”.

 __ CM Process Network Connect [21-Dec-1995 21:25:45]

Msg

Sink

2.3.2.3. Connection Manager -- Process Network Disconnect

This Module implements “PSPEC 1.3: Process Network Disconnect”.

 __ CM Process Network Disconnect [21-Dec-1995 21:25:37]

Msg

Sink

2.3.2.4. Connection Manager -- Process Network Status

This Module implements “PSPEC 1.4: Process Network Status”.

 __ CM Process Network Status [21-Dec-1995 21:25:28]

Msg

Sink

2.3.2.5. Connection Manager -- Process Transport Connect

This Module implements “PSPEC 1.6: Process Transport Connect”.
 __ CM Process Transport Connect [21-Dec-1995 21:25:19]

Msg

Start

A

True Write:
State

Write: Destination
Address

Extract Msg
Transport
Connect Request

M Destination Address

M State

2.3.2.6. Connection Manager -- Process Transport Disconnect

This Module implements “PSPEC 1.7: Process Transport Disconnect”.

 __ CM Process Transport Disconnect [21-Dec-1995 21:25:10]

Msg Stop

False Write:
State

M State

2.3.2.7. Management

This Module implements “DFD 2: Management Processor”. This also incorporates
“PSPEC 2.1: Validate Mgmt Message and Extract IE”.

 A2-39

 T Management [21-Dec-1995 21:26:13]

Management
IE Portal

Process
Parameters

Declare IE
Transport
Parameters

P Address

M Management Portal

M Initial Sequence Number

2.3.2.8. Management -- Process Parameters

This Module implements “PSPEC 2.2: Process Setup IE”.

 __ M Process Parameters [21-Dec-1995 21:26:04]

IE
I Write: Initial

Sequence
Number

Extract IE
Transport
Parameters

M Initial Sequence Number

2.3.2.9. TCP Established Processing

This Module implements “DFD 3: TCP Processing”. In this diagram, the module
names have been renamed such that “Process Connection Start” corresponds to “TCP
Start”; “Process Connection Stop” to “TCP Stop”; and “Process Quench Indication”
to “TCP Quench”.

 A2-40

 TCP Established Processing [21-Dec-1995 21:27:57]

Quench

Stop

Start

Data-Output Data-Input

T-Msg Input T-Msg Output

M
sg

M
sg

Stop

Start

En
d

M
sg

Quench

In
pu

t
Pr

oc
es

si
ng

Ti
m

er
Pr

oc
es

si
ng

Process
Connection
Stop

Process
Connection
Start

Ex
tra

ct
M

sg
 V

ec
to

r

O
ut

pu
t

Pr
oc

es
si

ng

Process
Quench Indication

Buffer
Processing

E TCP Timer

M TCB Number

M Receive Buffer

M Transmit Buffer

M Initial Sequence Number

2.3.2.10. TCP Established Processing -- Buffer Processing

This Module was an implict part of “PSPEC 5.4: Process TCP Outgoing” but has been
factored into a separate module.

 A2-41

 __ TE Buffer Processing [21-Dec-1995 21:27:47]

Output Data Input Data

Input Kick Kick Output

T F

LT

I>
0?

G
at

e

0

I+

W
rit

e:
R

ec
ei

ve
Bu

ffe
r

W
rit

e:
Tr

an
sm

it
Bu

ffe
r

R
ec

ei
ve

Bu
ffe

r

Tr
an

sm
it

Bu
ffe

r

Ex
tra

ct
M

sg
 A

pp
lic

at
io

n
D

at
a

C
re

at
e

M
sg

Ap
pl

ic
at

io
n

D
at

a

M Transmit Buffer

M Receive Buffer

2.3.2.11. TCP Established Processing -- TCP Start

This Module implements “PSPEC 3.1: Start TCP”.

 __ TE TCP Start [21-Dec-1995 21:27:03]

Start

Done

3
2
1

Execute
In Order
3

TCP_Start

Write:
Transmit
Buffer

Write:
Receive
Buffer

0

100ms

Timer:0

Start
Timer

Initial
Sequence
Number

M TCB Number

M Initial Sequence Number

E TCP Timer

M Transmit Buffer

M Receive Buffer

 A2-42

2.3.2.12. TCP Established Processing -- TCP Stop

This Module implements “PSPEC 3.2: Stop TCP”.

 __ TE TCP Stop [21-Dec-1995 21:26:53]

Stop

Done

3
2
1

Execute
In Order
3 TCP_Stop

Cancel
TimerTimer:0

M TCB Number

M Transmit Buffer

M Receive Buffer

E TCP Timer

2.3.2.13. TCP Established Processing -- TCP Timer

This Module implements “PSPEC 3.3: Process TCP Timers”.

 __ TE TCP Timer [21-Dec-1995 21:26:45]

Msg
Service
Timer TCP_Timer

E TCP Timer
M Transmit Buffer
M TCB Number
M Receive Buffer

2.3.2.14. TCP Established Processing -- TCP Output

This Module implements “PSPEC 3.4: Process TCP Outgoing”.

 __ TE TCP Output [21-Dec-1995 21:27:20]

In Msg

TCP_Output

M Transmit Buffer
M TCB Number
M Receive Buffer

2.3.2.15. TCP Established Processing -- TCP Input

This Module implements “PSPEC 3.5: Process TCP Incoming”.

 A2-43

 __ TE TCP Input [21-Dec-1995 21:27:28]

MsgIn Msg

TCP_Input

M Transmit Buffer
M TCB Number
M Receive Buffer

2.3.2.16. TCP Established Processing -- TCP Quench

This Module implements an element not present in the design; it was later determined
that the TCP Queue facility should be added for potential investigation.

 __ TE TCP Quench [21-Dec-1995 21:27:11]

Quench OMsg

TCP_Quench

M TCB Number
M Transmit Buffer

M Receive Buffer

2.3.2.17. TCP Established Processing -- Extract Msg Vector

This Module implements “PSPEC 3.6: Transmit TCP Messages”. Due to the nature of
the ‘C’ implementation, a mechanism for allowing the release of multiple Messages
needed to be constructed; this module extracts those Messages and sends them.
 __ TE Extract Msg Vector [21-Dec-1995 21:27:37]

MsgVector

End

Msg

One_Way One_Way

Declare
Msg Transport
TCP

Delay
Msg Vector
: Element

Msg Vector
: Length

Write:
Msg Vector

Int Do
(0,N-1)

M Msg Vector

2.3.2.18. TCP Input

This Module acts as the interface betwen BONeS and the TCP Module, as
implemented in ‘C’for processing a received TCP segment. The TCB Number
correponds to an entry in a TCB Table allocated from TCP Start, the Send and Recv
Buffers are self descriptive.

 A2-44

 TCP_Input [21-Dec-1995 21:28:50]

Input-Msg Output-Msg

M TCB Number

M Send Buffer

M Recv Buffer

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_TCP_Input.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_TCP_Input (Input_Msg, Output_Msg, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.3.2.19. TCP Output

This Module acts as the interface betwen BONeS and the TCP Module, as
implemented in ‘C’for processing an outgoing unit of data. The TCB Number
correponds to an entry in a TCB Table allocated from TCP Start, the Send and Recv
Buffers are self descriptive.

 TCP_Output [21-Dec-1995 21:28:42]

Trigger Output-Msg

M TCB Number

M Send Buffer

M Recv Buffer

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3

 A2-45

4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_TCP_Output.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_TCP_Output (Trigger, Output_Msg, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.3.2.20. TCP Quench

This Module acts as the interface betwen BONeS and the TCP Module, as
implemented in ‘C’for processing a network indication of traffic congestion. The TCB
Number correponds to an entry in a TCB Table allocated from TCP Start, the Send
and Recv Buffers are self descriptive.

 TCP_Quench [21-Dec-1995 21:28:32]

Trigger Output-Msg

M TCB Number

M Send Buffer

M Recv Buffer

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_TCP_Quench.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_TCP_Quench (Trigger, Output_Msg, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.3.2.21. TCP Start

This Module acts as the interface betwen BONeS and the TCP Module, as
implemented in ‘C’for starting TCP processing. The TCB Number correponds to an

 A2-46

entry in a TCB Table allocated by this module, the Send and Recv Buffers are self
descriptive.

 TCP_Start [21-Dec-1995 21:28:24]

Initial Sequence Number

M TCB Number

M Send Buffer

M Recv Buffer

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_TCP_Start.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_TCP_Start (InitialSequenceNumber, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.3.2.22. TCP Stop

This Module acts as the interface betwen BONeS and the TCP Module, as
implemented in ‘C’for stopping TCP processing. The TCB Number correponds to an
entry in a TCB Table allocated from TCP Start, the Send and Recv Buffers are self
descriptive.

 TCP_Stop [21-Dec-1995 21:28:16]

Trigger

M TCB Number

M Send Buffer

M Recv Buffer

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3

 A2-47

4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_TCP_Stop.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_TCP_Stop (Trigger, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.3.2.23. TCP Timer

This Module acts as the interface betwen BONeS and the TCP Module, as
implemented in ‘C’for processing the periodic TCP Timer. The TCB Number
correponds to an entry in a TCB Table allocated from TCP Start, the Send and Recv
Buffers are self descriptive.

 TCP_Timer [21-Dec-1995 21:28:06]

Trigger Output-Msg

M TCB Number

M Send Buffer

M Recv Buffer

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_TCP_Timer.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User RUN Below Here */
13
14 /* -- */
15 BONeS_TCP_Timer (Trigger, Output_Msg, argvector);
16 /* -- */
17
18 /* User RUN Above Here */
19

2.3.2.24. Transport Interface

This Module implements “DFD 4: Transport Interface”. This also includes “PSPEC
4.1: Process Outgoing Data” and “PSPEC 4.2: Process Incoming Data”.

 A2-48

 __ T Transport Interface [21-Dec-1995 21:26:34]

T-Msg Output T-Msg Input

Data Input Data Output

M
MCL

T F

M
T F

D
ec

la
re

M
sg

 A
pp

lic
at

io
n

D
at

aEx
tra

ct
M

sg
 T

ra
ns

po
rt

D
at

a
Sw

itc
h

St
at

e

==
 ?

Tr
ue

C
on

st
ru

ct
M

sg
 T

ra
ns

po
rt

D
at

a
In

di
ca

tio
n

Tr
ue

Sw
itc

h

==
 ?

St
at

e

M State

2.3.2.25. Network Interface

This Module implements “DFD 5: Network Interface”. This also includes “PSPEC
5.1: Process Incoming Message” and “PSPEC 5.2: Process Outgoing Message”.

 A2-49

 __ T Netw ork Interface [21-Dec-1995 21:26:24]

T-Msg Output T-Msg Input
Quench

N-Msg Input N-Msg Output

M A

T F

T
F

MSA
dd

r
D

Ad
dr

EC
N

H
op

C
nt

CL

M
T F

D
es

tin
at

io
n

A
dd

re
ss

C
on

st
ru

ct
M

sg
 N

et
w

or
k

D
at

a
R

eq
S

w
itc

h

S
ta

te

==
 ?

Tr
ue

I>0?
D

ec
la

re
M

sg
 T

ra
ns

po
rt

TC
P

E
xt

ra
ct

M
sg

 N
et

w
or

k
D

at
a

Tr
ue

S
w

itc
h

==
 ?

S
ta

te

M State

M Destination Address

2.3.3. Support Modules

2.3.3.1. Construct IE Transport Parameters

 Construct IE Transport Parameters [21-Dec-1995 21:23:32]

ISN IEInsert Initial
Sequence
Number

Create IE
Transport
Parameters

2.3.3.2. Extract IE Trasnport Parameters

 A2-50

 Extract IE Transport Parameters [21-Dec-1995 21:24:18]

IE
ISN

DS

F

Select Initial
Sequence
Number

2.3.3.3. Construct Msg Transport Connect Request

 Construct Msg Transport Connect Request [21-Dec-1995 21:23:42]

Address MsgInsert
Address

Create Msg
Transport
Connect Request

2.3.3.4. Construct Msg Transport Data Indication
 Construct Msg Transport Data Indication [21-Dec-1995 21:23:52]

Msg

Msg Data Ind

DS
F

Insert
Creation
Time Insert

Content

Insert
Length

Create Msg
Transport
Data Indication

I+

Header
Length

Select
Length TNow

P Transport Header Length

2.3.3.5. Construct Msg Transport Data Request

 Construct Msg Transport Data Request [21-Dec-1995 21:24:01]

Msg

Msg Data Req

DS
F

Insert
Content

Insert
Length

Insert
Creation
Time

Create Msg
Transport
Data Request

I+

Header
Length

Select
Length TNow

P Transport Header Length

2.3.3.6. Construct Msg Transport Disconnect Request

 Construct Msg Transport Disconnect Request [21-Dec-1995 21:24:10]

Trigger MsgCreate Msg
Transport
Disconnect
Request

2.3.3.7. Construct Msg Transport TCP

 A2-51

 Construct Msg Transport TCP [21-Dec-1995 21:28:59]

T_Recent

T_Now

F-TStmp

F-Ack

Win

Ack

Seq

Length

MsgInsert
T_Recent

Insert
T_Now

Insert
Flag--Timestamp

Insert
Creation
Time

Insert
Length

I+

Header
Length

TNow

Insert
Flag--Ack

Insert
Win

Insert
Ack

Insert
Seq

Create
Msg Transport
TCP

P TCP Header Length

2.3.3.8. Extract IE Transport Parameters

 Extract IE Transport Parameters [21-Dec-1995 21:24:18]

IE
ISN

DS

F

Select Initial
Sequence
Number

2.3.3.9. Extract Msg Transport Connect Request

 Extract Msg Transport Connect Request [21-Dec-1995 21:24:28]

Msg Address

Output-Msg

DS
FSelect

Address

2.3.3.10. Extract Msg Transport Data

 A2-52

 Extract Msg Transport Data [21-Dec-1995 21:24:37]

Msg Input

Msg Output

Content

Length

DS

F

DS
F

DS
F

Select
Creation
Time

Select
Content

Select
Length

2.3.4. ‘C’ Modules

The Transmission Control Protocol (TCP) implementation was carried out by
implementing bridging functions that mapped between the TCP implementation and
BONeS. This decoupling was for the purposes of allowing testing of the TCP
functionality outside of the BONeS environment.

2.3.4.1. BONeS Interface

1
2 /* -- */
3 /* $Id: BONeS_Interface.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: BONeS_Interface.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* _BONeS_Get_Send_Buffer_Sz
15 |
16 | Return the size of the current send buffer; that is supplied as an
17 | argument to this module.
18 */
19 static int _BONeS_Get_Send_Buffer_Sz (Tcb)
20 TcbPtr Tcb;
21 {
22 arg_ptr argvector = Tcb->argvector;
23 return __GetINTEGERVal (SendBuffer_arc);
24 }
25
26 /* -- */
27
28 /* _BONeS_Set_Send_Buffer_Sz
29 |
30 | Set the size of the send buffer according to the passed argument.
31 */
32 static int _BONeS_Set_Send_Buffer_Sz (Tcb, Size)
33 TcbPtr Tcb;
34 int Size;
35 {
36 arg_ptr argvector = Tcb->argvector;
37 __PutINTEGERVal (SendBuffer_arc, Size);
38 return __GetINTEGERVal (SendBuffer_arc);
39 }
40
41 /* -- */
42
43 /* _BONeS_Get_Recv_Buffer_Sz
44 |
45 | Return the size of the receive buffer, that is supplied as a BONeS
46 | argument to this primitive.
47 */
48 static int _BONeS_Get_Recv_Buffer_Sz (Tcb)
49 TcbPtr Tcb;

 A2-53

50 {
51 arg_ptr argvector = Tcb->argvector;
52 return __GetINTEGERVal (RecvBuffer_arc);
53 }
54
55 /* -- */
56
57 /* _BONeS_Set_Recv_Buffer_Sz
58 |
59 | Set the size of the recv buffer.
60 */
61 static int _BONeS_Set_Recv_Buffer_Sz (Tcb, Size)
62 TcbPtr Tcb;
63 int Size;
64 {
65 arg_ptr argvector = Tcb->argvector;
66 __PutINTEGERVal (RecvBuffer_arc, Size);
67 return __GetINTEGERVal (RecvBuffer_arc);
68 }
69
70 /* -- */
71

2.3.4.2. BONeS TCP Start

1
2 /* -- */
3 /* $Id: BONeS_TCP_Start.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: BONeS_TCP_Start.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* -- */
15 # include "/u/mgream/BONeS/Constructed/TCP/TCP.c"
16 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_Interface.c"
17 /* -- */
18
19 /* BONeS_TCP_Start
20 |
21 | Setup a TCB; by creating one and setting up the index mapping to
22 | it, and then initialising the sequence numbers with the passed
23 | initial sequence number.
24 */
25 static void BONeS_TCP_Start (InitialSequenceNumber, argvector)
26 arc_ptr InitialSequenceNumber;
27 arg_ptr argvector;
28 {
29 int _TcbNumber = TcbCreate ();
30 TcbPtr Tcb = TcbLookup (TCBNumber);
31
32 __PutINTEGERVal (TCBNumber_arc, _TcbNumber);
33
34 if (Tcb != NULL)
35 {
36 Init_Process (Tcb, __GetINTEGERVal (InitialSequenceNumber));
37 }
38
39 __FreeArc (InitialSequenceNumber);
40 }
41
42 /* -- */
43

2.3.4.3. BONeS TCP Stop

 A2-54

1

 A2-55

34
35 if (Tcb != NULL)
36 {

2 /* -- */
3 /* $Id: BONeS_TCP_Stop.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: BONeS_TCP_Stop.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* -- */
15 # include "/u/mgream/BONeS/Constructed/TCP/TCP.c"
16 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_Interface.c"
17 /* -- */
18
19 /* BONeS_TCP_Stop
20 |
21 | Time to shut down the TCB; which is done simply by calling the
22 | tcb destroy mechanism. There is nothing else to clean up, but
23 | we do make sure to set the tcbnumber index to an invalid value
24 | so that it can't be accidently reused.
25 */
26 static void BONeS_TCP_Stop (InTrigger, argvector)
27 arc_ptr InTrigger;
28 arg_ptr argvector;
29 {
30 TcbDestroy (TCBNumber);
31
32 __PutINTEGERVal (TCBNumber_arc, -1);
33 __FreeArc (InTrigger);
34 }
35
36 /* -- */
37

2.3.4.4. BONeS TCP Input

1
2 /* -- */
3 /* $Id: BONeS_TCP_Input.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: BONeS_TCP_Input.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* -- */
15 # include "/u/mgream/BONeS/Constructed/TCP/TCP.c"
16 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_Interface.c"
17 /* -- */
18
19 /* BONeS_TCP_Input
20 |
21 | The input processing is slightly tricky because we have an input
22 | message that must be converted into an internal representation,
23 | which we do first before firing up the input process. Again, as
24 | with other TCP processing, we have the required output queue
25 | setup and extraction.
26 */
27 static void BONeS_TCP_Input (InputMsg, OutputMsg, argvector)
28 arc_ptr InputMsg;
29 arc_ptr OutputMsg;
30 arg_ptr argvector;
31 {
32 TcbPtr Tcb = TcbLookup (TCBNumber);
33 MsgPtr Msg;

37 Tcb->argvector = argvector;

 A2-56

4 * $Log: BONeS_TCP_Quench.c,v $
5 * Revision 1.1 1995/12/21 11:08:30 mgream
6 * Initial revision

38 OutQueue_Initialise ();
39 Msg = MsgCreate ();
40 MsgConvertFromBONeS (Msg, InputMsg);
41 Input_Process (Tcb, Msg);
42 MsgDestroy (Msg);
43 OutQueue_Extract (OutputMsg);
44 }
45
46 __FreeArc (InputMsg);
47 }
48
49 /* -- */
50

2.3.4.5. BONeS TCP Output

1
2 /* -- */
3 /* $Id: BONeS_TCP_Output.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: BONeS_TCP_Output.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* -- */
15 # include "/u/mgream/BONeS/Constructed/TCP/TCP.c"
16 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_Interface.c"
17 /* -- */
18
19 /* BONeS_TCP_Output
20 |
21 | We come into here on a kick as well; the output process fires
22 | in a non-forced mode after having set up the output queue, upon
23 | exit, the queue is extracted into the output vector and pumped
24 | outwards.
25 */
26 static void BONeS_TCP_Output (InTrigger, OutputMsg, argvector)
27 arc_ptr InTrigger;
28 arc_ptr OutputMsg;
29 arg_ptr argvector;
30 {
31 TcbPtr Tcb = TcbLookup (TCBNumber);
32
33 if (Tcb != NULL)
34 {
35 Tcb->argvector = argvector;
36 OutQueue_Initialise ();
37 Output_Process (Tcb, FALSE);
38 OutQueue_Extract (OutputMsg);
39 }
40
41 __FreeArc (InTrigger);
42 }
43
44 /* -- */
45

2.3.4.6. BONeS TCP Quench

1
2 /* -- */
3 /* $Id: BONeS_TCP_Quench.c,v 1.1 1995/12/21 11:08:30 mgream Exp $

7 *

 A2-57

37 OutQueue_Initialise ();
38 Timer_Process (Tcb);
39 OutQueue_Extract (OutputMsg);

8 */
9 /* -- */
10
11 /* -- */
12 # include "/u/mgream/BONeS/Constructed/TCP/TCP.c"
13 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_Interface.c"
14 /* -- */
15
16 /* BONeS_TCP_Quench
17 |
18 | We come into here on a kick as well; the queue process simply
19 | plays with variables and doesn't do much else.
20 */
21 static void BONeS_TCP_Quench (InTrigger, OutputMsg, argvector)
22 arc_ptr InTrigger;
23 arc_ptr OutputMsg;
24 arg_ptr argvector;
25 {
26 TcbPtr Tcb = TcbLookup (TCBNumber);
27
28 if (Tcb != NULL)
29 {
30 Tcb->argvector = argvector;
31 OutQueue_Initialise ();
32 Quench_Process (Tcb);
33 OutQueue_Extract (OutputMsg);
34 }
35
36 __FreeArc (InTrigger);
37 }
38
39 /* -- */
40

2.3.4.7. BONeS TCP Timer

1
2 /* -- */
3 /* $Id: BONeS_TCP_Timer.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: BONeS_TCP_Timer.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* -- */
15 # include "/u/mgream/BONeS/Constructed/TCP/TCP.c"
16 # include "/u/mgream/BONeS/Constructed/TCP/BONeS_Interface.c"
17 /* -- */
18
19 /* BONeS_TCP_Timer
20 |
21 | The entry point here is a trigger that pumps out every 100ms, we
22 | locate the appropriate Tcb, setup the output queue and then go
23 | and kick the timer process. Upon return, the output queue is
24 | extracted for any messages that have to be pumped outwards. We
25 | also must free the input trigger.
26 */
27 static void BONeS_TCP_Timer (InTrigger, OutputMsg, argvector)
28 arc_ptr InTrigger;
29 arc_ptr OutputMsg;
30 arg_ptr argvector;
31 {
32 TcbPtr Tcb = TcbLookup (TCBNumber);
33
34 if (Tcb != NULL)
35 {
36 Tcb->argvector = argvector;

40 }

 A2-58

22 | contains information such as session state, fragment queues and
23 | so on. The second data structure is the message, which has a fixed
24 | set of fields and a next pointer so that we can chain them in a

41
42 __FreeArc (InTrigger);
43
44 }
45
46 /* -- */
47

2.3.4.8. BONeS TCP (Primitive)

1
2 /* -- */
3 /* $Id: TCP.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: TCP.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* -- */
15
16 # include "/u/mgream/BONeS/Constructed/TCP/prototypes.h"
17
18 # include "/u/mgream/BONeS/Constructed/TCP/tcp_frag.c"
19 # include "/u/mgream/BONeS/Constructed/TCP/tcp_data.c"
20
21 # include "/u/mgream/BONeS/Constructed/TCP/tcp_tcb.c"
22 # include "/u/mgream/BONeS/Constructed/TCP/tcp_msg.c"
23 # include "/u/mgream/BONeS/Constructed/TCP/tcp_outqueue.c"
24
25 # include "/u/mgream/BONeS/Constructed/TCP/tcp_timers.c"
26 # include "/u/mgream/BONeS/Constructed/TCP/tcp_output.c"
27 # include "/u/mgream/BONeS/Constructed/TCP/tcp_input.c"
28 # include "/u/mgream/BONeS/Constructed/TCP/tcp_quench.c"
29
30 # include "/u/mgream/BONeS/Constructed/TCP/tcp_init.c"
31
32 /* -- */
33

2.3.4.8.1. Data

1
2 /* -- */
3 /* $Id: tcp_data.c,v 1.3 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_data.c,v $
5 * Revision 1.3 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.2 1995/10/10 08:15:17 mgream
9 * cosmetic changes
10 *
11 * Revision 1.1 1995/10/10 08:07:07 mgream
12 * Initial revision
13 *
14 */
15 /* -- */
16
17 /* -- */
18 /* - - - DATA STRUCTURES - - -
19 |
20 | There are two primary datastructures in use; the first is the
21 | Transmission Control Block which maintains TCP Information. It

25 | linked list.

 A2-59

103 u_short t_maxseg;
104
105 tcp_seq last_ack_sent;

26 | There are also macros and defines to cover specific TCP magic
27 | numbers and so forth.
28 */
29 /* -- */
30
31 typedef int boolean;
32
33 # define FALSE 0
34 # define TRUE 1
35
36 /* -- */
37
38 typedef unsigned long tcp_seq;
39
40 /* -- */
41
42 /* TcbEntry
43 |
44 | The transmission control block contains the necessary state
45 | information for a TCP instance; this is modelled on the BSD
46 | 4.4/Net 3 paradigm.
47 */
48
49 typedef struct TcbEntry_ST
50 {
51 /* Flags */
52 boolean Flag_DelayedAck;
53 boolean Flag_Ack;
54
55 /* Timer variables */
56 u_long Timer_Persist;
57 u_long Timer_Retransmit;
58
59 /* Send Window/Sequence state */
60 u_long snd_wnd;
61 tcp_seq snd_una;
62 tcp_seq snd_nxt;
63 tcp_seq snd_wl1;
64 tcp_seq snd_wl2;
65
66 tcp_seq snd_max;
67
68 /* Recv Window/Sequence state */
69 u_long rcv_wnd;
70 tcp_seq rcv_nxt;
71
72 tcp_seq rcv_adv;
73
74 /* Congestion Control parameters */
75 u_long snd_cwnd;
76 u_long snd_ssthresh;
77
78 /* Round Trip Time parameters */
79 short t_idle;
80 short t_rtt;
81 tcp_seq t_rtseq;
82 short t_srtt;
83 short t_rttvar;
84 u_short t_rttmin;
85 u_long max_sndwnd;
86
87 /* Window Scaling */
88 u_char snd_scale;
89 u_char rcv_scale;
90
91 /* Timestamp */
92 boolean Flag_Timestamp;
93 u_long ts_recent;
94 u_long ts_recent_age;
95
96 /* Current TCP Time */
97 u_long tcp_now;
98
99 /* Retransmit parameters */
100 short t_rxtshift;
101 short t_rxtcur;
102 short t_dupacks;

106

 A2-60

184
185 /* -- */
186

107 /* Our Stuff */
108 int _timer_ticks;
109 boolean Allocated;
110 Queue * FragQueue;
111
112 arg_ptr argvector;
113
114 } TcbEntry;
115 typedef TcbEntry * TcbPtr;
116
117 /* -- */
118
119 /* Message
120 |
121 | This is an actual TCP message that is used to communicate between
122 | two TCP instances; note that this is an internal representation
123 | that is mapped from the external (BONeS) one.
124 */
125
126 typedef struct Message_ST
127 {
128 struct Message_ST * Next;
129
130 /* Length */
131 u_short len;
132
133 /* Sequence/Window Information */
134 tcp_seq seq;
135 tcp_seq ack;
136 u_short win;
137
138 /* Flags */
139 boolean Flag_Ack;
140
141 /* Timestamp */
142 boolean Flag_Timestamp;
143 u_long t_recent;
144 u_long t_now;
145
146 } Message;
147 typedef Message * MsgPtr;
148
149 /* -- */
150
151 /* Macros
152 |
153 */
154
155 # define TCP_MSS 512
156
157 # define TCP_MAXWIN 65535
158 # define TCP_MAX_WINSHIFT 14
159 # define TCP_RTTDFLT (TCPTV_SRTTDFLT / PR_SLOWHZ)
160
161 # define TCP_RTT_SHIFT 3
162 # define TCP_RTTVAR_SHIFT 2
163 # define TCP_RTTVAR_SCALE 4
164 # define TCP_MAXRXTSHIFT 12
165
166 # define PR_SLOWHZ 2
167
168 # define TCPTV_MIN (1 * PR_SLOWHZ)
169 # define TCPTV_REXMTMAX (64 * PR_SLOWHZ)
170 # define TCPTV_SRTTBASE (0 * PR_SLOWHZ)
171 # define TCPTV_SRTTDFLT (3 * PR_SLOWHZ)
172
173 # define TCPTV_PERSMIN (5 * PR_SLOWHZ)
174 # define TCPTV_PERSMAX (60 * PR_SLOWHZ)
175
176 # define TCPREXMTTHRESH 3
177
178 /* -- */
179
180 # define SEQ_LT(a,b) ((int)((a)-(b)) < 0)
181 # define SEQ_LEQ(a,b) ((int)((a)-(b)) <= 0)
182 # define SEQ_GT(a,b) ((int)((a)-(b)) > 0)
183 # define SEQ_GEQ(a,b) ((int)((a)-(b)) >= 0)

187 #ifndef MAX

 A2-61

62
63 /* -- */
64

188 # define MAX(a,b) (((a)>(b)) ? (a) : (b))
189 #endif
190 #ifndef MIN
191 # define MIN(a,b) (((a)<(b)) ? (a) : (b))
192 #endif
193
194 /* -- */
195

2.3.4.8.2. TCB

1
2 /* -- */
3 /* $Id: tcp_tcb.c,v 1.3 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_tcb.c,v $
5 * Revision 1.3 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.2 1995/10/10 08:15:17 mgream
9 * cosmetic changes
10 *
11 * Revision 1.1 1995/10/10 08:07:07 mgream
12 * Initial revision
13 *
14 */
15 /* -- */
16
17
18 /* -- */
19 /* Required Externals:
20 QueueCreate
21 QueueDestroy
22 */
23
24 /* -- */
25 /* - - - TCB TABLE HANDLING - - -
26 |
27 | The TCB table is where we keep a list of all the TCBs. This module
28 | instantiates the TCB table and provides a set of functions to
29 | create, destroy and lookup entries in the table for use with
30 | TCP processing. Note that the declaration of DECLARE_MAIN_VARIABLES
31 | refers to a single instantiation of the table, whereas otherwise
32 | only an external reference to the table is declared. There must be
33 | one and only one declaration of this parameter. Everything else
34 | can be static, there is no harm.
35 */
36 /* -- */
37 /* -- */
38
39 /* TcbEntry Table
40 |
41 | The control block table is a global table that contains all the
42 | control blocks; one slot per entry that is allocated to callers.
43 | note that we either declare it, or declare it as an external
44 | reference, so that all the TCP modules can see it, and not see
45 | duplicates.
46 */
47
48 #ifdef DECLARE_MAIN_VARIABLES
49 # define _SCOPE
50 #else
51 # define _SCOPE extern
52 #endif
53
54 # define TCB_TABLE_SZ 1024
55
56 _SCOPE TcbEntry TcbTable[TCB_TABLE_SZ];
57 _SCOPE int TcbTableInitialised
58 #ifdef DECLARE_MAIN_VARIABLES
59 = 0
60 #endif
61 ;

65 /* TcbCreate

 A2-62

143

66 |
67 | Create a new TCB entry by locating a free slot in the table, and
68 | thence initialisating the TCB. The index is returned back to the
69 | caller (and is expected to be used to set up a mapping into the
70 | table) with subsequent lookups and destroys.
71 */
72 static int TcbCreate ()
73 {
74 int TcbIndex;
75
76 if (TcbTableInitialised == 0)
77 {
78 TcbTableInitialised = 1;
79 for (TcbIndex = 0; TcbIndex < TCB_TABLE_SZ; TcbIndex++)
80 TcbTable[TcbIndex].Allocated = FALSE;
81 }
82
83 for (TcbIndex = 0; TcbIndex < TCB_TABLE_SZ &&
84 TcbTable[TcbIndex].Allocated == TRUE; TcbIndex++)
85 ;
86
87 if (TcbIndex < TCB_TABLE_SZ)
88 {
89 TcbPtr Tcb = &TcbTable[TcbIndex];
90
91 Tcb->Allocated = TRUE;
92 Tcb->FragQueue = QueueCreate ();
93 Tcb->_timer_ticks = 0;
94 }
95
96 return TcbIndex;
97 }
98
99 /* -- */
100
101 /* TcbDestroy
102 |
103 | There comes a time when Tcb's have to go back into the void, so
104 | here we have the function that shuts down the tcb and clears any
105 | internal memory that might be hanging around; including the
106 | fragment queue.
107 */
108 static void TcbDestroy (TcbIndex)
109 int TcbIndex;
110 {
111 if (TcbIndex >= 0 && TcbIndex < TCB_TABLE_SZ &&
112 TcbTable[TcbIndex].Allocated == TRUE)
113 {
114 TcbPtr Tcb = &TcbTable[TcbIndex];
115
116 QueueDestroy (Tcb->FragQueue);
117 Tcb->Allocated = FALSE;
118 }
119 }
120
121 /* -- */
122
123 /* TcbLookup
124 |
125 | Locate the TCB by simply applying the mapping; it was evisaged
126 | that there may be a message queue and some other miscellany
127 | in the table that would require us to perform initialisation
128 | here.
129 */
130 static TcbPtr TcbLookup (TcbIndex)
131 int TcbIndex;
132 {
133 if (TcbIndex >= 0 && TcbIndex < TCB_TABLE_SZ &&
134 TcbTable[TcbIndex].Allocated == TRUE)
135 {
136 return &TcbTable[TcbIndex];
137 }
138
139 return NULL;
140 }
141
142 /* -- */

2.3.4.8.3. Init

 A2-63

75 Tcb->tcp_now = 0;
76
77 Tcb->t_rxtshift = 0;

1
2 /* -- */
3 /* $Id: tcp_init.c,v 1.2 1995/10/10 08:15:17 mgream Exp $
4 * $Log: tcp_init.c,v $
5 * Revision 1.2 1995/10/10 08:15:17 mgream
6 * cosmetic changes
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /* -- */
15 /* Required Externals:
16 */
17
18 /* -- */
19 /* - - - INIT PROCESSING - - -
20 |
21 | Set up the TCB with all the default values.
22 */
23 /* -- */
24 /* -- */
25
26 /* -- */
27
28 /* Init_Process
29 |
30 | Initialise the TCB with all the required content, this includes
31 | the initial sequence numbers for both sender and receiver as well
32 */
33 static void Init_Process (Tcb, isn)
34 TcbPtr Tcb;
35 tcp_seq isn;
36 {
37
38 Tcb->Flag_DelayedAck = FALSE;
39 Tcb->Flag_Ack = FALSE;
40
41 Tcb->Timer_Persist = 0;
42 Tcb->Timer_Retransmit = 0;
43
44 Tcb->snd_wnd = (TCP_MAXWIN << TCP_MAX_WINSHIFT);
45 Tcb->snd_una = isn;
46 Tcb->snd_nxt = isn;
47 Tcb->snd_wl1 = 0;
48 Tcb->snd_wl2 = 0;
49 Tcb->snd_max = isn;
50
51 Tcb->rcv_wnd = (TCP_MAXWIN << TCP_MAX_WINSHIFT);
52 Tcb->rcv_nxt = isn;
53 Tcb->rcv_adv = isn;
54
55 Tcb->last_ack_sent = isn;
56
57 Tcb->snd_cwnd = (TCP_MAXWIN << TCP_MAX_WINSHIFT);
58 Tcb->snd_ssthresh = (TCP_MAXWIN << TCP_MAX_WINSHIFT);
59
60 Tcb->t_idle = 0;
61 Tcb->t_rtt = 0;
62 Tcb->t_rtseq = 0;
63 Tcb->t_srtt = TCPTV_SRTTBASE;
64 Tcb->t_rttvar = TCP_RTTDFLT * (PR_SLOWHZ << 2);
65 Tcb->t_rttmin = TCPTV_MIN;
66 Tcb->max_sndwnd = 0;
67
68 Tcb->snd_scale = 14;
69 Tcb->rcv_scale = 14;
70
71 Tcb->Flag_Timestamp = TRUE;
72 Tcb->ts_recent = 0;
73 Tcb->ts_recent_age = 0;
74

78 Tcb->t_rxtcur = Confine_Range (((TCPTV_SRTTBASE >> 2) +

 A2-64

61 static field_handle _fh_Flag_Ack;
62 static field_handle _fh_Flag_Timestamp;
63 static field_handle _fh_Time_Recent;

79 (TCPTV_SRTTDFLT << 2)) >> 1,
80 TCPTV_MIN, TCPTV_REXMTMAX);
81 Tcb->t_dupacks = 0;
82 Tcb->t_maxseg = TCP_MSS;
83
84 }
85
86 /* -- */
87

2.3.4.8.4. Message

1
2 /* -- */
3 /* $Id: tcp_msg.c,v 1.3 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_msg.c,v $
5 * Revision 1.3 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.2 1995/10/10 08:15:17 mgream
9 * cosmetic changes
10 *
11 * Revision 1.1 1995/10/10 08:07:07 mgream
12 * Initial revision
13 *
14 */
15 /* -- */
16
17 /* -- */
18 /* - - - MESSAGE ACCESS - - -
19 |
20 | These primitives allow creation and destruction of internally
21 | represented TCP messages, along with converting between the
22 | internal and external (i.e. BONeS) representation.
23 */
24
25 /* -- */
26 /* -- */
27
28 /* MsgCreate
29 |
30 | Create a msg by allocating off the heap.
31 */
32 static MsgPtr MsgCreate ()
33 {
34 return (MsgPtr) __Balloc (sizeof (Message), "MsgCreate: Message");
35 }
36
37 /* -- */
38
39 /* MsgDestroy
40 |
41 | Return the message structure back to the heap by freeing it.
42 */
43 static void MsgDestroy (Msg)
44 MsgPtr Msg;
45 {
46 __Bfree ((void*)Msg);
47 }
48
49 /* -- */
50
51 /* Field Handles
52 |
53 | These are constant throughout module execution, so we can init
54 | them once, and leave it be after that.
55 */
56 static int _fh_Initialised = 0;
57 static field_handle _fh_Length;
58 static field_handle _fh_Win;
59 static field_handle _fh_Seq;
60 static field_handle _fh_Ack;

64 static field_handle _fh_Time_Now;

 A2-65

142

65 static type_handle _th_Msg_Transport_TCP;
66
67 /* -- */
68
69 /* _fh_Initialise
70 |
71 | Initialise the field and type handles, we can used either Id's or
72 | ASCII names, i've preferred to the latter; there is no real
73 | significant difference.
74 */
75 static void _fh_Initialise ()
76 {
77 if (_fh_Initialised != 0)
78 return;
79 _fh_Initialised = 1;
80 _th_Msg_Transport_TCP = __GetTypeHandle ("Msg Transport TCP");
81 _fh_Length = __GetFldHandle (_th_Msg_Transport_TCP, "Length");
82 _fh_Win = __GetFldHandle (_th_Msg_Transport_TCP, "Win");
83 _fh_Seq = __GetFldHandle (_th_Msg_Transport_TCP, "Seq");
84 _fh_Ack = __GetFldHandle (_th_Msg_Transport_TCP, "Ack");
85 _fh_Flag_Ack = __GetFldHandle (_th_Msg_Transport_TCP, "Flag_Ack");
86 _fh_Flag_Timestamp = __GetFldHandle(_th_Msg_Transport_TCP,"Flag_Timestamp");
87 _fh_Time_Recent = __GetFldHandle (_th_Msg_Transport_TCP, "Time_Recent");
88 _fh_Time_Now = __GetFldHandle (_th_Msg_Transport_TCP, "Time_Now");
89 }
90
91 /* -- */
92
93 /* MsgConvertFromBONeS
94 |
95 | Convert a msg from the BONeS representation to one that we will
96 | use internally, which is much faster and acts as a point of
97 | isolation. Initialisation is carried out here, as well, if it
98 | hasn't already been done.
99 */
100 static void MsgConvertFromBONeS (Msg, BMsg)
101 MsgPtr Msg;
102 arc_ptr BMsg;
103 {
104 if (_fh_Initialised == 0)
105 _fh_Initialise ();
106 Msg->Next = NULL;
107 Msg->len = __GetINTEGERFldVal (BMsg, _fh_Length);
108 Msg->win = __GetINTEGERFldVal (BMsg, _fh_Win);
109 Msg->seq = __GetINTEGERFldVal (BMsg, _fh_Seq);
110 Msg->ack = __GetINTEGERFldVal (BMsg, _fh_Ack);
111 Msg->Flag_Ack = __GetINTEGERFldVal (BMsg, _fh_Flag_Ack);
112 Msg->Flag_Timestamp = __GetINTEGERFldVal (BMsg, _fh_Flag_Timestamp);
113 Msg->t_recent = __GetINTEGERFldVal (BMsg, _fh_Time_Recent);
114 Msg->t_now = __GetINTEGERFldVal (BMsg, _fh_Time_Now);
115 }
116
117 /* -- */
118
119 /* MsgConvertToBONeS
120 |
121 | Convert a msg from the internal representation into the BONeS
122 | representation. Also make sure to initialise if it hasn't already
123 | been done.
124 */
125 static void MsgConvertToBONeS (Msg, BMsg)
126 MsgPtr Msg;
127 arc_ptr BMsg;
128 {
129 if (_fh_Initialised == 0)
130 _fh_Initialise ();
131 __PutINTEGERFldVal (BMsg, _fh_Length, Msg->len);
132 __PutINTEGERFldVal (BMsg, _fh_Win, Msg->win);
133 __PutINTEGERFldVal (BMsg, _fh_Seq, Msg->seq);
134 __PutINTEGERFldVal (BMsg, _fh_Ack, Msg->ack);
135 __PutINTEGERFldVal (BMsg, _fh_Flag_Ack, Msg->Flag_Ack);
136 __PutINTEGERFldVal (BMsg, _fh_Flag_Timestamp, Msg->Flag_Timestamp);
137 __PutINTEGERFldVal (BMsg, _fh_Time_Recent, Msg->t_recent);
138 __PutINTEGERFldVal (BMsg, _fh_Time_Now, Msg->t_now);
139 }
140
141 /* -- */

2.3.4.8.5. Outgoing Queue

 A2-66

75
76 MsgTmp->Next = Msg;
77 }

1
2 /* -- */
3 /* $Id: tcp_outqueue.c,v 1.3 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_outqueue.c,v $
5 * Revision 1.3 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.2 1995/10/10 08:15:17 mgream
9 * cosmetic changes
10 *
11 * Revision 1.1 1995/10/10 08:07:07 mgream
12 * Initial revision
13 *
14 */
15 /* -- */
16
17 /* -- */
18 /* Required Externals:
19 MsgCreate
20 MsgDestroy
21 MsgConvertToBONeS
22 */
23
24 /* -- */
25 /* - - - OUTPUT QUEUE - - -
26 |
27 | The output queue is used for the storage of TCP messages that
28 | are to be transmitted during a run of a tcp entity; we do this
29 | because it is possible for multiple messages to be sent at once,
30 | so we need to queue them and then convert them into a vector
31 | which is then used in the BONeS environment to fan out to lots
32 | of individual messages. This Queue is a FIFO.
33 |
34 */
35 /* -- */
36
37 static MsgPtr OutQueue_Head = NULL;
38
39 /* -- */
40
41 /* OutQueue_Initialise
42 |
43 | Initialise the output queue; note that it is safe to do it using
44 | static variables like this because we will never have concurrent
45 | instances of the output queue occuring (i.e. once we enter the TCP
46 | primitive, we never go back to the BONeS environment until we
47 | finish, at which point we extract everything).
48 */
49 static void OutQueue_Initialise (void)
50 {
51 OutQueue_Head = NULL;
52 }
53
54 /* -- */
55
56 /* OutQueue_EnQueue
57 |
58 | EnQueue a message onto the Output Queue. This appends the passed
59 | message to the end of the queue.
60 */
61 static void OutQueue_EnQueue (Msg)
62 MsgPtr Msg;
63 {
64
65 if (OutQueue_Head == NULL)
66 {
67 OutQueue_Head = Msg;
68 }
69 else
70 {
71 MsgPtr MsgTmp = OutQueue_Head;
72
73 while (MsgTmp->Next != NULL)
74 MsgTmp = MsgTmp->Next;

78

 A2-67

156 /* -- */
157

79 Msg->Next = NULL;
80 }
81
82 /* -- */
83
84 /* OutQueue_DeQueue
85 |
86 | DeQueue a message from the Output Queue.
87 */
88 static MsgPtr OutQueue_DeQueue ()
89 {
90 MsgPtr Msg = OutQueue_Head;
91
92 if (OutQueue_Head != NULL)
93 OutQueue_Head = OutQueue_Head->Next;
94
95 return Msg;
96 }
97
98 /* -- */
99
100 /* OutQueue_GetSize
101 |
102 | Sometimes, size does matter, so we do need to know!
103 */
104 static int OutQueue_GetSize ()
105 {
106 MsgPtr Msg;
107 int Size = 0;
108
109 for (Msg = OutQueue_Head; Msg != NULL; Msg = Msg->Next)
110 Size++;
111
112 return Size;
113 }
114
115 /* -- */
116
117 /* OutQueue_Extract
118 |
119 | We process the content of the Queue by extracting each message
120 | in succession and adding into an outgoing vector. Note that this
121 | also includes having to set up the vector, and then put each
122 | element into it. There is a conversion mechanism that will map
123 | from the Internal representation into the BONeS representation.
124 */
125 static void OutQueue_Extract (MsgVector)
126 arc_ptr MsgVector;
127 {
128 MsgPtr Msg;
129 arc_t MsgBONeS;
130 int Index;
131 int Size;
132 type_handle TypeHandle;
133
134 Size = OutQueue_GetSize ();
135 if (Size == 0)
136 return;
137
138 MsgBONeS.enable = 0;
139 TypeHandle = __GetTypeHandle ("Msg Transport TCP");
140 __CreateCOMPOSITESubType (TypeHandle, &MsgBONeS);
141 __CreateVECTOR (TypeHandle, Size, &MsgBONeS, MsgVector);
142 __FreeArc (&MsgBONeS);
143
144 for (Index = 0; Index < Size; Index++)
145 {
146 Msg = OutQueue_DeQueue ();
147 MsgConvertToBONeS (Msg, &MsgBONeS);
148 MsgDestroy (Msg);
149
150 __PutVECTORElmVal (MsgVector, Index, &MsgBONeS);
151 __FreeArc (&MsgBONeS);
152 }
153
154 }
155

 A2-68

72 typedef struct Queue_ST {
73 Fragment * Head; /* Head of the Fragment chain */
74 } Queue;

2.3.4.8.6. Fragment

1
2 /* -- */
3 /* $Id: tcp_frag.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_frag.c,v $
5 * Revision 1.2 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.1 1995/10/10 08:07:07 mgream
9 * Initial revision
10 *
11 */
12 /* -- */
13
14 /*
15 | --- Fragment ---
16 |
17 | Module:
18 | Fragment Reassembly Module
19 | Author:
20 | Matthew Gream
21 | Description:
22 | The module implements primitives for maintaining a chain of
23 | fragments with the ability to add and remove fragments from
24 | the chain; specifically this caters for TCP fragments in a
25 | manner similar to TCP_REASS from BSD Net/3.
26 | Date:
27 | September 1995
28 | Revision:
29 | $Id: tcp_frag.c,v 1.2 1995/12/21 11:08:30 mgream Exp $
30 */
31
32 /* -- */
33
34 #ifdef TEST
35
36 # include <stdio.h>
37 # include <stdlib.h>
38 # include <string.h>
39 # include <assert.h>
40
41 # define _MALLOC(s,id) malloc (s)
42 # define _FREE(p) free (p)
43
44 #else
45
46 # define assert(x)
47 # define _MALLOC(s,id) __Balloc (s, id)
48 # define _FREE(p) __Bfree ((void *)p)
49
50 #endif
51
52 /* -- */
53
54 #ifndef _SEQ_GT
55 # define _SEQ_GT(a,b) ((int)((a) - (b)) > 0)
56 #endif
57
58 /* -- */
59 typedef unsigned long SeqNo;
60
61 /* -- */
62 /* Fragment :: Maintain information about one single Fragment */
63 typedef struct Fragment_ST {
64 struct Fragment_ST * Next; /* Next Fragment in chain */
65 struct Fragment_ST * Prev; /* Previous Fragment in chain */
66 SeqNo Sequence; /* Sequence number of this Fragment */
67 SeqNo Length; /* Length of this Fragment */
68 } Fragment;
69
70 /* -- */
71 /* Queue :: Maintain information about the Queue of Fragments */

75

 A2-69

153 assert (Head != NULL);
154 assert (Frag != NULL);
155 if (Frag->Prev != NULL)

76 /* -- */
77 #ifndef P
78 #ifdef ANSIC
79 # define P(x) x
80 #else
81 # define P(x) ()
82 #endif
83 #endif
84
85 static Fragment * FragmentCreate P ((SeqNo Sequence, SeqNo Length));
86 static void FragmentDestroy P ((Fragment * Frag));
87 static Fragment * FragmentRemove P ((Fragment * Head, Fragment * Frag));
88 static Fragment * FragmentInsert P ((Fragment * Head, Fragment * PFrag,
89 Fragment * Frag));
90 static Queue * QueueCreate P ((void));
91 static void QueueDestroy P ((Queue * Que));
92 static void QueueClear P ((Queue * Que));
93 static void QueueAddFragment P ((Queue * Que, SeqNo Sequence, SeqNo Length));
94 static SeqNo QueueGetHeadSequence P ((Queue * Que));
95 static SeqNo QueueGetHeadLength P ((Queue * Que));
96
97 /* -- */
98 /* FragmentCreate:
99 | Inputs:
100 | SeqNo Sequence -- Sequence number of the Fragment
101 | SeqNo Length -- Length of the Fragment
102 | Outputs:
103 | Fragment * -- The created Fragment
104 | Description:
105 | A new Fragment entry is created with the specified parameters
106 | (Sequence and Length).
107 */
108 static Fragment * FragmentCreate (Sequence, Length)
109 SeqNo Sequence;
110 SeqNo Length;
111 {
112 Fragment * Frag = (Fragment *) _MALLOC (sizeof (Fragment), "Fragment");
113 assert (Frag != NULL);
114 Frag->Next = NULL;
115 Frag->Prev = NULL;
116 Frag->Sequence = Sequence;
117 Frag->Length = Length;
118 return Frag;
119 }
120
121 /* -- */
122 /* FragmentDestroy:
123 | Inputs:
124 | Fragment * Frag -- Fragment we want to destroy
125 | Outputs:
126 | n/a
127 | Description:
128 | The Fragment is removed from existance.
129 */
130 static void FragmentDestroy (Frag)
131 Fragment * Frag;
132 {
133 assert (Frag != NULL);
134 _FREE (Frag);
135 }
136
137 /* -- */
138 /* FragmentRemove:
139 | Inputs:
140 | Fragment * Head -- The Head of the Fragment chain
141 | Fragment * Frag -- The Fragment to remove
142 | Outputs:
143 | Fragment * -- The new Head of the Fragment chain
144 | Description:
145 | The specified fragment entry is removed from the chain, with
146 | the assurance that the head of the chain is updated to reflect
147 | a new value should it change.
148 */
149 static Fragment * FragmentRemove (Head, Frag)
150 Fragment * Head;
151 Fragment * Frag;
152 {

156 Frag->Prev->Next = Frag->Next;

 A2-70

234 | Description:
235 | The specified Queue is destroyed; including any internal
236 | elements that may still be present.

157 else
158 Head = Frag->Next;
159 if (Frag->Next != NULL)
160 Frag->Next->Prev = Frag->Prev;
161 FragmentDestroy (Frag);
162 return Head;
163 }
164
165 /* -- */
166 /* FragmentInsert:
167 | Inputs:
168 | Fragment * Head -- The Head of the Fragment chain
169 | Fragment * PFrag -- The Fragment previous to the slot
170 | that we want to insert
171 | Fragment * Frag -- The Fragment to be inserted
172 | Outputs:
173 | Fragment * -- The new Head of the Fragment chain
174 | Description:
175 | The new Fragment is inserted after the specified Previous
176 | Fragment with all appropriate link pointers updated to
177 | reflect the insertion. The head value is altered and returned
178 | if it changes.
179 */
180 static Fragment * FragmentInsert (Head, PFrag, Frag)
181 Fragment * Head;
182 Fragment * PFrag;
183 Fragment * Frag;
184 {
185 assert (Frag != NULL);
186 if (Head == NULL)
187 {
188 Frag->Next = NULL;
189 Frag->Prev = NULL;
190 return Frag;
191 }
192 else if (PFrag == NULL)
193 {
194 Frag->Next = Head;
195 Frag->Prev = NULL;
196 if (Head != NULL)
197 Head->Prev = Frag;
198 Head = Frag;
199 }
200 else
201 {
202 Frag->Prev = PFrag;
203 Frag->Next = PFrag->Next;
204 if (PFrag->Next != NULL)
205 PFrag->Next->Prev = Frag;
206 PFrag->Next = Frag;
207 }
208 return Head;
209 }
210
211 /* -- */
212 /* QueueCreate:
213 | Inputs:
214 | n/a
215 | Outputs:
216 | Queue * -- The created Queue
217 | Description:
218 | A new Queue is created and initialised.
219 */
220 static Queue * QueueCreate ()
221 {
222 Queue * Que = (Queue *) _MALLOC (sizeof (Queue), "Queue Context");
223 assert (Que != NULL);
224 Que->Head = NULL; /* XXX: splodes if assert failed anyway */
225 return Que;
226 }
227
228 /* -- */
229 /* QueueDestroy:
230 | Inputs:
231 | Queue * Que -- The Queue to destroy
232 | Outputs:
233 | n/a

237 */

 A2-71

315
316 /* Trim the front of the Fragment depending the previous
317 entry in the Fragment chain

238 static void QueueDestroy (Que)
239 Queue * Que;
240 {
241 assert (Que != NULL);
242 QueueClear (Que);
243 _FREE (Que);
244 }
245
246 /* -- */
247 /* QueueClear:
248 | Inputs:
249 | Queue * Que -- The Queue to clear
250 | Outputs:
251 | n/a
252 | Description:
253 | All internal elements are cleared from the Queue.
254 */
255 static void QueueClear (Que)
256 Queue * Que;
257 {
258 while (Que->Head != NULL)
259 Que->Head = FragmentRemove (Que->Head, Que->Head);
260 }
261
262 /* -- */
263 /* QueueAddFragment:
264 | Inputs:
265 | Queue * Que -- The Queue to add into.
266 | SeqNo Sequence -- Sequence Number of the Fragment.
267 | SeqNo Length -- Length of the Fragment.
268 | Outputs:
269 | n/a
270 | Description:
271 | The incoming fragment will be trimmed and added into its
272 | appropriate position in the queue; which may require that
273 | other entries are also trimmed. In addition, it could occur
274 | that this or other elements are wholey removed.
275 */
276 static void QueueAddFragment (Que, Sequence, Length)
277 Queue * Que;
278 SeqNo Sequence;
279 SeqNo Length;
280 {
281 Fragment * Frag = FragmentCreate (Sequence, Length);
282 Fragment * QFrag;
283 Fragment * TFrag;
284 Fragment * EFrag;
285 int Range;
286
287 #ifdef TEST
288 printf ("QAF: Inserting Fragment : (%lu, %lu)\n", Sequence, Length);
289 #endif
290
291 if (Que->Head == NULL)
292 {
293 Que->Head = FragmentInsert (NULL, NULL, Frag);
294 return;
295 }
296
297 /* Locate the slot for our Fragment.
298 */
299 QFrag = Que->Head;
300 while (QFrag != NULL) {
301 if (_SEQ_GT (QFrag->Sequence, Frag->Sequence))
302 break;
303 EFrag = QFrag;
304 QFrag = QFrag->Next;
305 }
306
307 #ifdef TEST
308 if (QFrag == NULL)
309 printf (" : Slot located = (%lu, %lu) AFTER\n",
310 EFrag->Sequence, EFrag->Length);
311 else
312 printf (" : Slot located = (%lu, %lu) BEFORE\n",
313 QFrag->Sequence, QFrag->Length);
314 #endif

318 */

 A2-72

396 | Queue, noting that it is assumed that there is an actual
397 | element at the head of the Queue.
398 */

319 if (QFrag == NULL || QFrag->Prev != NULL) {
320 QFrag = (QFrag == NULL) ? EFrag : QFrag->Prev;
321 Range = (int)(QFrag->Sequence + QFrag->Length - Frag->Sequence);
322 if (Range > 0) {
323 if (Range >= Frag->Length) {
324 FragmentDestroy (Frag);
325 #ifdef TEST
326 printf (" : Fragment completely covered by (%lu, %lu)\n",
327 QFrag->Sequence, QFrag->Length);
328 #endif
329 return;
330 }
331 Frag->Sequence += Range;
332 Frag->Length -= Range;
333 #ifdef TEST
334 printf (" : Trimmed Fragment = (%lu, %lu)\n", Frag->Sequence,
335 Frag->Length);
336 #endif
337 }
338 QFrag = QFrag->Next;
339 }
340
341 /* Remove or Trim subsequent Fragments in the Fragment chain
342 */
343 while (QFrag != NULL) {
344 Range = (int)((Frag->Sequence + Frag->Length) - QFrag->Sequence);
345 if (Range <= 0)
346 break;
347 if (Range < QFrag->Length) {
348 #ifdef TEST
349 printf (" : Trimming entry (%lu, %lu) to (%lu, %lu)\n",
350 QFrag->Sequence, QFrag->Length,
351 QFrag->Sequence + Range, QFrag->Length - Range);
352 #endif
353 QFrag->Sequence += Range;
354 QFrag->Length -= Range;
355 break;
356 }
357 #ifdef TEST
358 printf (" : Removing entry (%lu, %lu) as obsolete\n",
359 QFrag->Sequence, QFrag->Length);
360 #endif
361 TFrag = QFrag;
362 QFrag = QFrag->Next;
363 Que->Head = FragmentRemove (Que->Head, TFrag);
364 }
365 #ifdef TEST
366 if (QFrag == NULL)
367 printf (" : Inserting after entry (%lu, %lu)\n",
368 EFrag->Sequence, EFrag->Length);
369 else if (QFrag->Prev == NULL)
370 printf (" : Inserting at Head\n");
371 else
372 printf (" : Inserting after entry (%lu, %lu)\n",
373 QFrag->Prev->Sequence, QFrag->Prev->Length);
374 #endif
375 Que->Head = FragmentInsert (Que->Head, (QFrag == NULL) ?
376 EFrag : QFrag->Prev, Frag);
377
378 #ifdef TEST
379 printf (" : Fragment added; Queue contents:\n");
380 printf (" : ");
381 for (Frag = Que->Head; Frag != NULL; Frag = Frag->Next)
382 printf ("(%lu, %lu) ", Frag->Sequence, Frag->Length);
383 printf ("\n");
384 #endif
385 }
386
387 #ifdef UNUSED_CODE
388 /* -- */
389 /* QueueGetHeadSequence:
390 | Inputs:
391 | Queue * Que -- The Queue that we are working on.
392 | Outputs:
393 | SeqNo -- Sequence number of the head element.
394 | Description:
395 | Returns the Sequence number of the very top element on the

399 static SeqNo QueueGetHeadSequence (Que)

 A2-73

477 QueueGetHeadLength (Que);
478 QueueDestroy (Que);
479 }

400 Queue * Que;
401 {
402 assert (Que->Head != NULL);
403 return Que->Head->Sequence;
404 }
405 #endif
406
407 /* -- */
408 /* QueueGetSize
409 | Inputs:
410 | Queue * Que -- The Queue we are querying.
411 | Outputs:
412 | int -- Number of Fragments on the Queue.
413 | Description:
414 | The number of fragments that exist on the reassembly queue
415 | are counted and returned.
416 */
417 static int QueueGetSize (Que)
418 Queue * Que;
419 {
420 Fragment * Frag;
421 int QueSz = 0;
422 for (Frag = Que->Head; Frag != NULL; Frag = Frag->Next)
423 QueSz++;
424 return QueSz;
425 }
426
427 /* -- */
428 /* QueueGetHeadLength
429 | Inputs:
430 | Queue * Que -- The Queue we are working on.
431 | Outputs:
432 | SeqNo -- Total Length of top Fragment.
433 | Description:
434 | The maximal contiguous sequence range from the first
435 | fragment in the Queue is returned.
436 */
437 static SeqNo QueueGetHeadLength (Que)
438 Queue * Que;
439 {
440 SeqNo Length = 0;
441 if (Que->Head != NULL) {
442 SeqNo SequenceNext;
443 do {
444 Length += Que->Head->Length;
445 SequenceNext = Que->Head->Sequence + Que->Head->Length;
446 Que->Head = FragmentRemove (Que->Head, Que->Head);
447 } while (Que->Head != NULL && SequenceNext == Que->Head->Sequence);
448 }
449 #ifdef TEST
450 { Fragment * Frag;
451 printf ("QGHL: Length Extracted (%lu); Queue contents:\n", Length);
452 printf (" : ");
453 for (Frag = Que->Head; Frag != NULL; Frag = Frag->Next)
454 printf ("(%lu, %lu) ", Frag->Sequence, Frag->Length);
455 printf ("\n");
456 }
457 #endif
458 return Length;
459 }
460
461 /* -- */
462
463 #ifdef TEST
464 void main (argc, argv)
465 int argc;
466 char ** argv;
467 {
468 Queue * Que = QueueCreate ();
469 QueueAddFragment (Que, 10, 10);
470 QueueAddFragment (Que, 40, 10);
471 QueueAddFragment (Que, 30, 05);
472 QueueAddFragment (Que, 15, 10);
473 QueueAddFragment (Que, 31, 01);
474 QueueAddFragment (Que, 50, 02);
475 QueueGetHeadLength (Que);
476 QueueAddFragment (Que, 15, 30);

480 #endif

 A2-74

67 | Update the receive window.
68 */
69 static int In_Update_Receive_Window (Tcb, Msg, inp)

481
482 /* -- */
483

2.3.4.8.7. Input

1
2 /* -- */
3 /* $Id: tcp_input.c,v 1.3 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_input.c,v $
5 * Revision 1.3 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.2 1995/10/10 08:15:17 mgream
9 * cosmetic changes
10 *
11 * Revision 1.1 1995/10/10 08:07:07 mgream
12 * Initial revision
13 *
14 */
15 /* -- */
16
17 /* -- */
18 /* Required Externals:
19 _BONeS_Get_Send_Buffer_Sz
20 _BONeS_Set_Send_Buffer_Sz
21 _BONeS_Get_Recv_Buffer_Sz
22 _BONeS_Set_Recv_Buffer_Sz
23 QueueAddFragment
24 QueueGetHeadLength
25 */
26
27 /* -- */
28 /* - - - INPUT PROCESSING - - -
29 |
30 | Input processing occurs which a received segment, what we do is
31 | perform a series of steps which are abstracted down into two
32 | phases, the first phase is a verification of the message including
33 | alterations to it if need be; the second is actually processing
34 | the content of the message.
35 */
36 /* -- */
37 /* -- */
38
39 /* EXIT_FLAGS
40 |
41 | These flags are used as function returns to indicate appropriate
42 | action.
43 */
44 # define I_STOP 0
45 # define I_NEXT 1
46 # define I_SKIP 2
47
48 /* -- */
49
50 /* Input_Info_ST
51 |
52 | This data structure is used to contain local information used
53 | during the Input phase; it was considered better to do it this
54 | way rather than pass a lot of variables through subroutines.
55 */
56 typedef struct Input_Info_ST
57 {
58 boolean needoutput;
59 int acked;
60 } Input_Info;
61 typedef Input_Info * InPtr;
62
63 /* -- */
64
65 /* In_Update_Receive_Window
66 |

70 TcbPtr Tcb;

 A2-75

148
149 return I_NEXT;
150 }

71 MsgPtr Msg;
72 InPtr inp;
73 {
74 Tcb->rcv_wnd = MAX (TCP_MAXWIN << TCP_MAX_WINSHIFT,
75 Tcb->rcv_adv - Tcb->rcv_nxt);
76
77 return I_NEXT;
78 }
79
80 /* -- */
81
82 /* In_Check_Segment_Position
83 |
84 | Check the segments position within our receive window; we do this
85 | by looking to see how much of is outside the receive window, and
86 | if all of it is, then we throw the message away and send out an
87 | ack.
88 */
89 static int In_Check_Segment_Position (Tcb, Msg, inp)
90 TcbPtr Tcb;
91 MsgPtr Msg;
92 InPtr inp;
93 {
94 int todrop;
95
96 todrop = Tcb->rcv_nxt - Msg->seq;
97
98 if (todrop > 0)
99 {
100 if (todrop >= Msg->len)
101 {
102 Tcb->Flag_Ack = TRUE;
103
104 todrop = Msg->len;
105 }
106
107 Msg->len = Msg->len - todrop;
108 Msg->seq = Msg->seq + todrop;
109 }
110
111 return I_NEXT;
112 }
113
114 /* -- */
115
116 /* In_Trim_Segment_Content
117 |
118 | What we do here is check to see how much of the segment lies outside
119 | of the window; and we attempt to throw away that which does. If the
120 | segment is fully outside, then drop the message and throw back an
121 | ack to our peer to indicate so.
122 */
123 static int In_Trim_Segment_Content (Tcb, Msg, inp)
124 TcbPtr Tcb;
125 MsgPtr Msg;
126 InPtr inp;
127 {
128 int todrop;
129
130 todrop = (Msg->seq + Msg->len) - (Tcb->rcv_nxt + Tcb->rcv_wnd);
131
132 if (todrop > 0)
133 {
134 if (todrop >= Msg->len)
135 {
136 Tcb->Flag_Ack = TRUE;
137
138 if (!(Tcb->rcv_wnd == 0 && Msg->seq == Tcb->rcv_nxt))
139 {
140 Output_Process (Tcb, FALSE);
141
142 return I_STOP;
143 }
144 }
145
146 Msg->len = Msg->len - todrop;
147 }

151

 A2-76

229 | pipe full : and kick output processing.
230 */
231 static int In_Ack_Duplicate_Acks (Tcb, Msg, inp)

152 /* -- */
153
154 /* In_Process_Timestamp
155 |
156 | Extract the timestamp and related information from the message, we
157 | make sure that we only accept timestamps that are from valid
158 | messages, and not retransmits.
159 */
160 static int In_Process_Timestamp (Tcb, Msg, inp)
161 TcbPtr Tcb;
162 MsgPtr Msg;
163 InPtr inp;
164 {
165 if (Msg->Flag_Timestamp == TRUE &&
166 SEQ_LEQ (Msg->seq, Tcb->last_ack_sent) &&
167 SEQ_LT (Tcb->last_ack_sent, Msg->seq + Msg->len))
168 {
169 Tcb->ts_recent_age = Tcb->tcp_now;
170 Tcb->ts_recent = Msg->t_now;
171 }
172
173 return I_NEXT;
174 }
175
176 /* -- */
177
178 /* In_Initial_Processing
179 |
180 | The input stage requires some initial processing, this takes the
181 | form of carrying out several validity checks on the segment, and
182 | possibly tossing away the segment if we happen to need to do so.
183 | The processing we do is as follows:
184 | 1. Receive Window -- recompute the receive window (this is not
185 | affected by the incoming message, but we only need to have
186 | it done for input processing).
187 | 2. Segment Position -- check the segments position in the
188 | receive window, as we may need to drop it.
189 | 3. Trim Segment -- cut out upper and lower chunks from the
190 | segment if they fall outside the window, note that this
191 | may also cause the entire segment to be dropped.
192 | 4. Process Timestamp -- extract the timestamp option from the
193 | segment and update local fields.
194 | The first thing we do, also, is to make sure that we indicate that
195 | we are not idle anymore.
196 */
197 static int In_Initial_Process (Tcb, Msg, inp)
198 TcbPtr Tcb;
199 MsgPtr Msg;
200 InPtr inp;
201 {
202 Tcb->t_idle = 0;
203
204 if (In_Update_Receive_Window (Tcb, Msg, inp) == I_STOP)
205 return I_STOP;
206
207 if (In_Check_Segment_Position (Tcb, Msg, inp) == I_STOP)
208 return I_STOP;
209
210 if (In_Trim_Segment_Content (Tcb, Msg, inp) == I_STOP)
211 return I_STOP;
212
213 if (In_Process_Timestamp (Tcb, Msg, inp) == I_STOP)
214 return I_STOP;
215
216 return I_NEXT;
217 }
218
219 /* -- */
220
221 /* In_Ack_Duplicate_Acks
222 |
223 | This is where we process duplicate acks. We increase them until a
224 | threshold is reached, at which point we scale back the slow start
225 | threshold and the congestion window, then fire off tcp output as
226 | a guess that we seen a packet dropped (but not hit the retransmit
227 | threshold). If we are more than the threshold of duplicate acks,
228 | we pump up the congestion window by a segment so as to keep the

232 TcbPtr Tcb;

 A2-77

310 if (Tcb->t_srtt <= 0)
311 {
312 Tcb->t_srtt = 1;

233 MsgPtr Msg;
234 InPtr inp;
235 {
236 if (SEQ_LEQ (Msg->ack, Tcb->snd_una))
237 {
238 if (Msg->len == 0 && (Msg->win << Tcb->snd_scale) == Tcb->snd_wnd)
239 {
240 if (Tcb->Timer_Retransmit == 0 || Msg->ack != Tcb->snd_una)
241 {
242 Tcb->t_dupacks = 0;
243 }
244 else if (++Tcb->t_dupacks == TCPREXMTTHRESH)
245 {
246 tcp_seq onxt;
247 u_int win;
248
249 onxt = Tcb->snd_nxt;
250
251 win = MIN (Tcb->snd_wnd, Tcb->snd_cwnd) / 2 / Tcb->t_maxseg;
252 if (win < 2)
253 win = 2;
254
255 Tcb->snd_ssthresh = win * Tcb->t_maxseg;
256 Tcb->Timer_Retransmit = 0;
257 Tcb->t_rtt = 0;
258 Tcb->snd_nxt = Msg->ack;
259 Tcb->snd_cwnd = Tcb->t_maxseg;
260
261 Output_Process (Tcb, FALSE);
262
263 Tcb->snd_cwnd = Tcb->snd_ssthresh +
264 Tcb->t_maxseg * Tcb->t_dupacks;
265
266 if (SEQ_GT (onxt, Tcb->snd_nxt))
267 {
268 Tcb->snd_nxt = onxt;
269 }
270
271 return I_STOP;
272 }
273 else if (Tcb->t_dupacks > TCPREXMTTHRESH)
274 {
275 Tcb->snd_cwnd = Tcb->snd_cwnd + Tcb->t_maxseg;
276
277 Output_Process (Tcb, FALSE);
278
279 return I_STOP;
280 }
281 }
282 else
283 {
284 Tcb->t_dupacks = 0;
285 }
286
287 return I_SKIP;
288 }
289
290 return I_NEXT;
291 }
292
293 /* -- */
294
295 /* Process_Transmit_Timer
296 |
297 | Compute a new smoothed RTT value.
298 */
299 static void Process_Transmit_Timer (Tcb, rtt)
300 TcbPtr Tcb;
301 int rtt;
302 {
303 if (Tcb->t_srtt != 0)
304 {
305 short delta;
306
307 delta = rtt - 1 - (Tcb->t_srtt >> TCP_RTT_SHIFT);
308
309 Tcb->t_srtt = Tcb->t_srtt + delta;

313 }

 A2-78

391 Tcb->Timer_Retransmit = Tcb->t_rxtcur;
392 }
393

314
315 if (delta < 0)
316 {
317 delta = -delta;
318 }
319
320 delta = delta - (Tcb->t_rttvar >> TCP_RTTVAR_SHIFT);
321
322 Tcb->t_rttvar = Tcb->t_rttvar - delta;
323 if (Tcb->t_rttvar <= 0)
324 {
325 Tcb->t_rttvar = 1;
326 }
327 }
328 else
329 {
330 Tcb->t_srtt = rtt << TCP_RTT_SHIFT;
331 Tcb->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
332 }
333
334 Tcb->t_rtt = 0;
335 Tcb->t_rxtshift = 0;
336 Tcb->t_rxtcur = Confine_Range (Get_Retransmit_Value (),
337 Tcb->t_rttmin, TCPTV_REXMTMAX);
338 }
339
340 /* -- */
341
342 /* In_Ack_Update_Round_Trip_Time
343 |
344 | Update our round trip time estimators, taking into account two
345 | cases, the first being where we have a timestamp, so we can use
346 | this (much more reliable) information to do the RTT. Otherwise,
347 | if the ack is greater than that which we sent out to time for
348 | this segment, then we use our estimated rtt time.
349 | CHECK THIS.
350 */
351 static int In_Ack_Update_Round_Trip_Time (Tcb, Msg, inp)
352 TcbPtr Tcb;
353 MsgPtr Msg;
354 InPtr inp;
355 {
356 if (Msg->Flag_Timestamp == TRUE)
357 {
358 Process_Transmit_Timer (Tcb, Tcb->tcp_now - Msg->t_recent + 1);
359 }
360 else if (Tcb->t_rtt != 0 && SEQ_GT (Msg->ack, Tcb->t_rtseq))
361 {
362 Process_Transmit_Timer (Tcb, Tcb->t_rtt);
363 }
364
365 return I_NEXT;
366 }
367
368 /* -- */
369
370 /* In_Ack_Update_Retransmit_Timer
371 |
372 | The retransmit timer needs to be either stopped or restarted
373 | depending on two conditions; the first is the case where we have
374 | been acked up to everything we have sent; which means that we
375 | don't need to be retransmitting. Alternatively, if we are not
376 | persisting, then do go in for the retransmit.
377 | CHECK THIS.
378 */
379 static int In_Ack_Update_Retransmit_Timer (Tcb, Msg, inp)
380 TcbPtr Tcb;
381 MsgPtr Msg;
382 InPtr inp;
383 {
384 if (Msg->ack == Tcb->snd_max)
385 {
386 Tcb->Timer_Retransmit = 0;
387 inp->needoutput = TRUE;
388 }
389 else if (Tcb->Timer_Persist == 0)
390 {

394 return I_NEXT;

 A2-79

472 | is drop out here if we are being acked for data that is above our
473 | window (should neeever happen ...).
474 */

395 }
396
397 /* -- */
398
399 /* In_Ack_Update_Congestion
400 |
401 | Update the congestion window, what we do is increase it just a tad
402 | but constrain it to the maximum window we can send.
403 */
404 static int In_Ack_Update_Congestion (Tcb, Msg, inp)
405 TcbPtr Tcb;
406 MsgPtr Msg;
407 InPtr inp;
408 {
409 int cw;
410 int incr;
411
412 cw = Tcb->snd_cwnd;
413
414 incr = Tcb->t_maxseg;
415
416 if (cw > Tcb->snd_ssthresh)
417 {
418 incr = incr * incr / cw;
419 }
420
421 Tcb->snd_cwnd = MIN (cw + incr, TCP_MAXWIN << Tcb->snd_scale);
422
423 return I_NEXT;
424 }
425
426 /* -- */
427
428 /* In_Ack_Process_Ack
429 |
430 | Here, the ACK is actually used to slop out data from the transmit
431 | buffer; what we do is look at how much has been acked, and it
432 | either covers the entire buffer, or only part thereof. Note that
433 | in TCP, we don't have selective acks, which kind of makes this
434 | process easier (at the cost of performance :-). Having finished
435 | updating the buffer, we update the next and unacknowledged
436 | sequence number fields in the Tcb.
437 */
438 static int In_Ack_Process_Ack (Tcb, Msg, inp)
439 TcbPtr Tcb;
440 MsgPtr Msg;
441 InPtr inp;
442 {
443 int buffer_sz = _BONeS_Get_Send_Buffer_Sz (Tcb);
444
445 if (inp->acked > buffer_sz)
446 {
447 _BONeS_Set_Send_Buffer_Sz (Tcb, 0);
448 Tcb->snd_wnd = Tcb->snd_wnd - buffer_sz;
449 }
450 else
451 {
452 _BONeS_Set_Send_Buffer_Sz (Tcb, buffer_sz - inp->acked);
453 Tcb->snd_wnd = Tcb->snd_wnd - inp->acked;
454 }
455
456 Tcb->snd_una = Msg->ack;
457
458 if (SEQ_LT (Tcb->snd_nxt, Tcb->snd_una))
459 {
460 Tcb->snd_nxt = Tcb->snd_una;
461 }
462
463 return I_NEXT;
464 }
465
466 /* -- */
467
468 /* In_Ack_Update_Remote
469 |
470 | If we have a pile of duplicate acks, then we may need to scale back
471 | the congestion window to the slow start threshold. Also, what we do

475 static int In_Ack_Update_Remote (Tcb, Msg, inp)

 A2-80

553
554 if (In_Ack_Process_Ack (Tcb, Msg, inp) == I_STOP)
555 return I_STOP;

476 TcbPtr Tcb;
477 MsgPtr Msg;
478 InPtr inp;
479 {
480 if (Tcb->t_dupacks > TCPREXMTTHRESH && Tcb->snd_cwnd > Tcb->snd_ssthresh)
481 {
482 Tcb->snd_cwnd = Tcb->snd_ssthresh;
483 }
484
485 Tcb->t_dupacks = 0;
486
487 if (SEQ_GT (Msg->ack, Tcb->snd_max))
488 {
489 Tcb->Flag_Ack = TRUE;
490
491 Output_Process (Tcb, FALSE);
492
493 return I_STOP;
494 }
495
496 inp->acked = Msg->ack - Tcb->snd_una;
497
498 return I_NEXT;
499 }
500
501 /* -- */
502
503 /* In_Ack_Process
504 |
505 | We must process lots of things in the input message relating to
506 | messages when they have acks on them. The following is what we
507 | need to look at:
508 | 1. Duplicate Acks -- These fire up the "fast retransmit" mechanism
509 | of TCP that assumes that 3 duplicate acks are a sign of
510 | lost segments.
511 | 2. Update Remote -- Check to see how much data is acked, and
512 | more fundamentally, whether or not the ack is within our
513 | window.
514 | 3. Update Round Trip Time -- This ack may be coming back from
515 | a segment we were timing, or alternatively we may use what
516 | was in the timestamp.
517 | 4. Stop Retransmit Timer -- Stop or continue the retransmit
518 | timer depending on whether this segment is in the window.
519 | 5. Update Congestion -- Must update the congestion window
520 | based on the incoming acks ("Ack clocking").
521 | 6. Process Ack -- Finally, the ack is processed so that we
522 | release transmit buffer content and update the appropriate
523 | sequence numbers.
524 */
525 static int In_Ack_Process (Tcb, Msg, inp)
526 TcbPtr Tcb;
527 MsgPtr Msg;
528 InPtr inp;
529 {
530 switch (In_Ack_Duplicate_Acks (Tcb, Msg, inp))
531 {
532 case I_SKIP:
533 return I_SKIP;
534
535 case I_STOP:
536 return I_STOP;
537
538 case I_NEXT:
539 break;
540 }
541
542 if (In_Ack_Update_Remote (Tcb, Msg, inp) == I_STOP)
543 return I_STOP;
544
545 if (In_Ack_Update_Round_Trip_Time (Tcb, Msg, inp) == I_STOP)
546 return I_STOP;
547
548 if (In_Ack_Update_Retransmit_Timer (Tcb, Msg, inp) == I_STOP)
549 return I_STOP;
550
551 if (In_Ack_Update_Congestion (Tcb, Msg, inp) == I_STOP)
552 return I_STOP;

556

 A2-81

634
635 Tcb->Flag_Ack = TRUE;
636 }

557 return I_NEXT;
558 }
559
560 /* -- */
561
562 /* In_Window_Update
563 |
564 | Process for a window update, by looking at the sent sequence numbers
565 | and the updated window. What we are trying to do is make sure that
566 | we only process window updates on acks where the update is not an
567 | old one!
568 */
569 static int In_Window_Update (Tcb, Msg, inp)
570 TcbPtr Tcb;
571 MsgPtr Msg;
572 InPtr inp;
573 {
574 if (Msg->Flag_Ack == TRUE && (SEQ_LT (Tcb->snd_wl1, Msg->seq) ||
575 (Tcb->snd_wl1 == Msg->seq && (SEQ_LT (Tcb->snd_wl2, Msg->ack) ||
576 (Tcb->snd_wl2 == Msg->ack &&
577 (Msg->win << Tcb->snd_scale) > Tcb->snd_wnd)))))
578 {
579 Tcb->snd_wnd = (Msg->win << Tcb->snd_scale);
580 Tcb->snd_wl1 = Msg->seq;
581 Tcb->snd_wl2 = Msg->ack;
582
583 if (Tcb->snd_wnd > Tcb->max_sndwnd)
584 {
585 Tcb->max_sndwnd = Tcb->snd_wnd;
586 }
587
588 inp->needoutput = TRUE;
589 }
590
591 return I_NEXT;
592 }
593
594 /* -- */
595
596 /* In_Data_Process
597 |
598 | Here we process the data that is in the segment, there are two
599 | cases (only for purposes of optimisation); the first is where
600 | we are receiving the next segment of data inline and there is
601 | nothing on the queue. We can accept the data straight away and
602 | pass it up to the application. The second case is where we do
603 | have existing fragments, so we stick this into the reassembly
604 | queue and immediately attempt to extract anything that is at
605 | the head of the queue. We setup a delayed ack flag for the
606 | inline case, and a normal ack for the other.
607 */
608 static int In_Data_Process (Tcb, Msg, inp)
609 TcbPtr Tcb;
610 MsgPtr Msg;
611 InPtr inp;
612 {
613 int len;
614 int buffer_sz = _BONeS_Get_Recv_Buffer_Sz (Tcb);
615
616 if (Msg->len > 0)
617 {
618 if (Msg->seq == Tcb->rcv_nxt && QueueGetSize (Tcb->FragQueue) == 0)
619 {
620 Tcb->Flag_DelayedAck = TRUE;
621 Tcb->rcv_nxt = Tcb->rcv_nxt + Msg->len;
622
623 _BONeS_Set_Recv_Buffer_Sz (Tcb, buffer_sz + Msg->len);
624 }
625 else
626 {
627 QueueAddFragment (Tcb->FragQueue, Msg->seq, Msg->len);
628 len = QueueGetHeadLength (Tcb->FragQueue);
629 if (len > 0)
630 {
631 Tcb->rcv_nxt = Tcb->rcv_nxt + len;
632 _BONeS_Set_Recv_Buffer_Sz (Tcb, buffer_sz + len);
633 }

637 }

 A2-82

1
2 /* -- */

638
639 return I_NEXT;
640 }
641
642 /* -- */
643
644 /* In_Content_Process
645 |
646 | Process the content of a message, taking several steps. These are
647 | the things that need to be done:
648 | 1. Ack Processing -- do all the things that occur when we get
649 | messages with the ack bit set.
650 | 2. Window Updating -- update the receive window.
651 | 3. Data Processing -- extract the content of the message and do
652 | something with it; i.e. send it up to the application or
653 | put it on the reassembly queue.
654 */
655 static int In_Content_Process (Tcb, Msg, inp)
656 TcbPtr Tcb;
657 MsgPtr Msg;
658 InPtr inp;
659 {
660 if (In_Ack_Process (Tcb, Msg, inp) == I_STOP)
661 return I_STOP;
662
663 if (In_Window_Update (Tcb, Msg, inp) == I_STOP)
664 return I_STOP;
665
666 if (In_Data_Process (Tcb, Msg, inp) == I_STOP)
667 return I_STOP;
668
669 return I_NEXT;
670 }
671
672 /* -- */
673
674 /* Input_Process
675 |
676 | The input process takes a Tcb and a Msg; it first needs to ensure
677 | that the message passes the initial processing steps which consist
678 | mostly of validity checking. If this succeeds, then the content
679 | of the message is processed; this encompasses ack processing and
680 | actual data processing. Having finished content processing, we
681 | may need to do something.
682 */
683 static void Input_Process (Tcb, Msg)
684 TcbPtr Tcb;
685 MsgPtr Msg;
686 {
687 Input_Info inp;
688
689 inp.needoutput = FALSE;
690 inp.acked = 0;
691
692 if (In_Initial_Process (Tcb, Msg, &inp) == I_NEXT)
693 {
694 if (Msg->Flag_Ack == TRUE)
695 {
696 In_Content_Process (Tcb, Msg, &inp);
697
698 if (inp.needoutput == TRUE || Tcb->Flag_Ack == TRUE)
699 {
700 Output_Process (Tcb, FALSE);
701 }
702 }
703 }
704 }
705
706 /* -- */
707

2.3.4.8.8. Output

3 /* $Id: tcp_output.c,v 1.3 1995/12/21 11:08:30 mgream Exp $

 A2-83

81 out->win = 1;
82 }
83 else

4 * $Log: tcp_output.c,v $
5 * Revision 1.3 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches
7 *
8 * Revision 1.2 1995/10/10 08:15:17 mgream
9 * cosmetic changes
10 *
11 * Revision 1.1 1995/10/10 08:07:07 mgream
12 * Initial revision
13 *
14 */
15 /* -- */
16
17 /* -- */
18 /* Required Externals:
19 OutQueue_EnQueue
20 _BONeS_Get_Send_Buffer_Sz
21 MsgCreate
22 */
23
24 /* -- */
25 /* - - - OUTPUT PROCESSING - - -
26 |
27 | Output processing involves two stages; the first is a check to
28 | determine whether there should be any output, and the second is
29 | concerned with actually carrying out the output.
30 */
31 /* -- */
32 /* -- */
33
34 /* EXIT_FLAGS
35 |
36 | These flags are used as function returns to indicate appropriate
37 | action.
38 */
39 # define O_STOP 0
40 # define O_SEND 1
41 # define O_NEXT 2
42
43 /* -- */
44
45 /* Output_Info_ST
46 |
47 | This data structure is used to contain local information used
48 | during the Output phase; it was considered better to do it this
49 | way rather than pass a lot of variables through subroutines.
50 */
51 typedef struct Output_Info_ST {
52 boolean force;
53 int idle;
54 boolean sendalot;
55 int off;
56 long win;
57 boolean ack_flag;
58 long len;
59 } Output_Info;
60 typedef Output_Info * OutPtr;
61
62 /* -- */
63
64 /* Out_Check_Forced
65 |
66 | Here, we do some processing that occurs only if we are forcing
67 | an output; remember that the only condition for a forced output
68 | is during a window probe when we are persisting. So, what we do
69 | is ensure that we are sending _something_, even if it is only
70 | a size of one. However, the case may be that our window is not
71 | zero, therefore we can kill the persist timer.
72 */
73 static int Out_Check_Forced (Tcb, out)
74 TcbPtr Tcb;
75 OutPtr out;
76 {
77 if (out->force == TRUE)
78 {
79 if (out->win == 0)
80 {

84 {

 A2-84

162 return O_SEND;
163
164 if (out->len >= (Tcb->max_sndwnd / 2))

85 Tcb->Timer_Persist = 0;
86 Tcb->t_rxtshift = 0;
87 }
88 }
89
90 return O_NEXT;
91 }
92
93 /* -- */
94
95 /* Out_Compute_Size
96 |
97 | Here, we figure out how much data we want to send. Firstly, we
98 | compute the initial size as the minimum of the send buffer and
99 | the available window; from that we subtract the amount that we
100 | have already send in this window. After which; we check for a
101 | negative length and do a check to see whether we are finished
102 | retransmitting. Finally, we truncate to maximum segment size
103 | that we are allowed to send, and make a note to the effect that
104 | we can come back here and send more.
105 */
106 static int Out_Compute_Size (Tcb, out)
107 TcbPtr Tcb;
108 OutPtr out;
109 {
110 out->len = MIN (_BONeS_Get_Send_Buffer_Sz (Tcb), out->win) - out->off;
111
112 if (out->len < 0)
113 {
114 out->len = 0;
115
116 if (out->win == 0)
117 {
118 Tcb->Timer_Retransmit = 0;
119 Tcb->snd_nxt = Tcb->snd_una;
120 }
121 }
122
123 if (out->len > Tcb->t_maxseg)
124 {
125 out->len = Tcb->t_maxseg;
126 out->sendalot = TRUE;
127 }
128
129 return O_NEXT;
130 }
131
132 /* -- */
133
134 /* Out_Silly_Window_Syndrome
135 |
136 | Silly Window Syndrome Avoidance is carried out both by the sender
137 | and receiver; here we see the sender side of it. What occurs is
138 | that a set of conditions are checked to see whether sending a
139 | segment is OK. Note that this only occurs when we actually have
140 | data to send (i.e. not a window update or ack). The conditions
141 | that are checked for are:
142 | 1. We are sending a maximum sized segment.
143 | 2. We have been idle and we are depleting the output buffer.
144 | 3. We are forcing output.
145 | 4. We are sending more than half the maximum segment sent.
146 | 5. We are retransmitting.
147 */
148 static int Out_Silly_Window_Syndrome (Tcb, out)
149 TcbPtr Tcb;
150 OutPtr out;
151 {
152 if (out->len != 0)
153 {
154 if (out->len == Tcb->t_maxseg)
155 return O_SEND;
156
157 if (out->idle != 0 && out->len + out->off >=
158 _BONeS_Get_Send_Buffer_Sz (Tcb))
159 return O_SEND;
160
161 if (out->force == TRUE)

165 return O_SEND;

 A2-85

243
244 return O_NEXT;
245 }

166
167 if (SEQ_LT (Tcb->snd_nxt, Tcb->snd_max))
168 return O_SEND;
169 }
170
171 return O_NEXT;
172 }
173
174 /* -- */
175
176 /* Out_Window_Update
177 |
178 | Check to see whether we are sending a pure window update. What we
179 | do is see whether the advertised window has changed by at least
180 | two maximum segments. Note that in this simulation, some of this
181 | code will never be executed; i.e. it should _always_ escape with
182 | O_SEND. The reason it has been left in is to preserve the logical
183 | structure and allow for a future modification.
184 */
185 static int Out_Window_Update (Tcb, out)
186 TcbPtr Tcb;
187 OutPtr out;
188 {
189 if (out->win > 0)
190 {
191 long adv;
192
193 adv = MIN (out->win, (long)(TCP_MAXWIN << Tcb->rcv_scale));
194 adv = adv - (Tcb->rcv_adv - Tcb->rcv_nxt);
195
196 if (adv >= (long)(2 * Tcb->t_maxseg))
197 return O_SEND;
198 }
199
200 return O_NEXT;
201 }
202
203 /* -- */
204
205 /* Out_Flags
206 |
207 | We may be explicitly sending an Acknowledgement, so make sure we
208 | go and send if this is the case.
209 */
210 static int Out_Flags (Tcb, out)
211 TcbPtr Tcb;
212 OutPtr out;
213 {
214 if (out->ack_flag == TRUE)
215 {
216 return O_SEND;
217 }
218
219 return O_NEXT;
220 }
221
222 /* -- */
223
224 /* Out_Persist_Check
225 |
226 | Here, we look at whether or not we are in the persist state; which
227 | occurs the buffer size is greater than zero, and we have failed
228 | all the previous output conditions. So, the persist timer is set
229 | up here then.
230 */
231 static int Out_Persist_Check (Tcb, out)
232 TcbPtr Tcb;
233 OutPtr out;
234 {
235 if (_BONeS_Get_Send_Buffer_Sz (Tcb) > 0)
236 {
237 if (Tcb->Timer_Retransmit == 0 && Tcb->Timer_Persist == 0)
238 {
239 Tcb->t_rxtshift = 0;
240 Timer_Persist_Setup (Tcb);
241 }
242 }

246

 A2-86

324 if (out->win < Tcb->t_maxseg)
325 out->win = 0;
326 if (out->win > (long)(TCP_MAXWIN << Tcb->rcv_scale))

247 /* -- */
248
249 /* Out_Check_If_Output_Needed
250 |
251 | This is the first half of tcp output processing, where we actually
252 | try to determine whether or not we should send something, and if
253 | so then establish the basic parameters (i.e. amount to send and so
254 | forth). Each subroutine indicates whether or not it has exited
255 | because it wants to SEND, or STOP, or CONTINUE (NEXT). We execute
256 | each check in succession. The checks are as follows:
257 | 1. Forced Output -- there are some special conditions that occur
258 | if we are _forcing_ output, so we do these.
259 | 2. Compute Size -- determine how much data we have to send, within
260 | the constraints of window, buffer and other sizes.
261 | 3. Silly Window Syndrome -- check out the silly window syndrome
262 | conditions; these may or may not inhibit transmission.
263 | 4. Window Update -- we may be sending a window update, so do it
264 | in here if that is the case.
265 | 5. Flags Check -- certain specific flags; i.e. "ack" may require
266 | us to send.
267 | 6. Persist Check -- finally, we may need to persist to probe for
268 | a window change.
269 */
270 static int Out_Check_If_Output_Needed (Tcb, out)
271 TcbPtr Tcb;
272 OutPtr out;
273 {
274 if (Out_Check_Forced (Tcb, out) == O_SEND)
275 return O_SEND;
276
277 if (Out_Compute_Size (Tcb, out) == O_SEND)
278 return O_SEND;
279
280 out->win = TCP_MAXWIN << TCP_MAX_WINSHIFT;
281
282 if (Out_Silly_Window_Syndrome (Tcb, out) == O_SEND)
283 return O_SEND;
284
285 if (Out_Window_Update (Tcb, out) == O_SEND)
286 return O_SEND;
287
288 if (Out_Flags (Tcb, out) == O_SEND)
289 return O_SEND;
290
291 if (Out_Persist_Check (Tcb, out) == O_SEND)
292 return O_SEND;
293
294 return O_STOP;
295 }
296
297 /* -- */
298
299 /* Out_Construct_Output_Msg
300 |
301 | Construct the output TCP message by filling in all the appropriate
302 | fields; this includes length, sequence number, flags, windows and
303 | timestamps.
304 */
305 static int Out_Construct_Output_Msg (Tcb, out, Msg)
306 TcbPtr Tcb;
307 OutPtr out;
308 MsgPtr Msg;
309 {
310 /* Length */
311 Msg->len = (out->len > 0) ? out->len : 0;
312
313 /* Sequence Number */
314 if (out->len > 0 || Tcb->Timer_Persist != 0)
315 Msg->seq = Tcb->snd_nxt;
316 else
317 Msg->seq = Tcb->snd_max;
318 Msg->ack = Tcb->rcv_nxt;
319
320 /* Flags */
321 Msg->Flag_Ack = out->ack_flag;
322
323 /* Window */

327 out->win = (long)(TCP_MAXWIN << Tcb->rcv_scale);

 A2-87

405 }
406
407 return O_SEND;

328 Msg->win = out->win >> Tcb->rcv_scale;
329
330 /* Timestamps */
331 Msg->Flag_Timestamp = Tcb->Flag_Timestamp;
332 Msg->t_now = Tcb->tcp_now;
333 Msg->t_recent = Tcb->ts_recent;
334
335 return O_SEND;
336 }
337
338 /* -- */
339
340 /* Out_Send_Msg
341 |
342 | The sending is done here, all we do is queue the message using a
343 | defined primitive. Messages are then dequeued just as we go back
344 | to the BONeS environment.
345 */
346 static int Out_Send_Msg (Tcb, out, Msg)
347 TcbPtr Tcb;
348 OutPtr out;
349 MsgPtr Msg;
350 {
351 OutQueue_EnQueue (Msg);
352
353 return O_SEND;
354 }
355
356 /* -- */
357
358 /* Out_Update_Sequence_Numbers
359 |
360 | Having just sent the message, we must update the various sequence
361 | numbers such as the maximum sequence number sent, and that sent
362 | but not acknowledged. What we do here is first check to see whether
363 | we are outputing because we are not forced or retransmitting, and
364 | then first update the maximum and next sequence numbers, setting
365 | up a rtt timer (i.e. the rtt timer only occurs if we are sending
366 | new data, not retransmitting). We make sure we setup for another
367 | retransmit too, if we are retransmitting.
368 */
369 static int Out_Update_Sequence_Numbers (Tcb, out)
370 TcbPtr Tcb;
371 OutPtr out;
372 {
373 if (out->force == FALSE || Tcb->Timer_Persist == 0)
374 {
375 if (SEQ_GT (Tcb->snd_nxt + out->len, Tcb->snd_max))
376 {
377 Tcb->snd_max = Tcb->snd_nxt + out->len;
378
379 if (Tcb->t_rtt == 0)
380 {
381 Tcb->t_rtt = 1;
382 Tcb->t_rtseq = Tcb->snd_nxt;
383 }
384 }
385
386 Tcb->snd_nxt = Tcb->snd_nxt + out->len;
387
388 if (Tcb->Timer_Retransmit == 0 && Tcb->snd_nxt != Tcb->snd_una)
389 {
390 Tcb->Timer_Retransmit = Tcb->t_rxtcur;
391
392 if (Tcb->Timer_Persist != 0)
393 {
394 Tcb->Timer_Persist = 0;
395 Tcb->t_rxtshift = 0;
396 }
397 }
398 }
399 else
400 {
401 if (SEQ_GT (Tcb->snd_nxt + out->len, Tcb->snd_max))
402 {
403 Tcb->snd_max = Tcb->snd_nxt + out->len;
404 }

408 }

 A2-88

486 static void Output_Process (Tcb, Force)
487 TcbPtr Tcb;
488 boolean Force;

409
410 /* -- */
411
412 /* Out_Send_Output
413 |
414 | The second half of output processing is to actuall construct and
415 | send a message, then to send it and update state variables in the
416 | TCB. This is done in three steps, first the message is constructed,
417 | then it is sent, and finally the various sequence numbers and the
418 | such like are updated.
419 */
420 static int Out_Send_Output (Tcb, out)
421 TcbPtr Tcb;
422 OutPtr out;
423 {
424 MsgPtr Msg = MsgCreate ();
425 Out_Construct_Output_Msg (Tcb, out, Msg);
426 Out_Send_Msg (Tcb, out, Msg);
427 Out_Update_Sequence_Numbers (Tcb, out);
428
429 return O_SEND;
430 }
431
432 /* -- */
433
434 /* Out_First_Init
435 |
436 | Output processing will iterate if there are a number of segments to
437 | send. So, at the start we must do some very first initialising to
438 | set up a few things. We set up the forced output flag, the idle
439 | flag, and if we have been idle then we reset the congestion window.
440 */
441 static void Out_First_Init (Tcb, out, Force)
442 TcbPtr Tcb;
443 OutPtr out;
444 boolean Force;
445 {
446 out->force = Force;
447
448 out->idle = (Tcb->snd_max == Tcb->snd_una);
449
450 if (out->idle != 0 && Tcb->t_idle >= Tcb->t_rxtcur)
451 {
452 Tcb->snd_cwnd = Tcb->t_maxseg;
453 }
454 }
455
456 /* -- */
457
458 /* Out_Loop_Init
459 |
460 | Initialise per segment looping; i.e reset the iterator flag, and
461 | set up our window offset and window size and our ack flag.
462 */
463 static void Out_Loop_Init (Tcb, out)
464 TcbPtr Tcb;
465 OutPtr out;
466 {
467 out->sendalot = FALSE;
468 out->off = Tcb->snd_nxt - Tcb->snd_una;
469 out->win = MIN (Tcb->snd_wnd, Tcb->snd_cwnd);
470 out->ack_flag = Tcb->Flag_Ack;
471 }
472
473 /* -- */
474
475 /* Output_Process
476 |
477 | The complete output processing stage; what we do here is use a
478 | local structure to maintain some common parameters and then
479 | initialise these with global values for all the segments we will
480 | output. Following this, we continue to look whilst the loop flag
481 | is set, and on each loop we will output a message. The looping
482 | itself consists of two stages, the first of which is checking
483 | to see if there is any output, and then if there is, actually
484 | constructing and sending the otuput.
485 */

489 {

 A2-89

7 *
8 * Revision 1.2 1995/10/10 08:15:17 mgream
9 * cosmetic changes

490 Output_Info OInfo;
491
492 Out_First_Init (Tcb, &OInfo, Force);
493
494 do
495 {
496 Out_Loop_Init (Tcb, &OInfo);
497
498 if (Out_Check_If_Output_Needed (Tcb, &OInfo) == O_STOP)
499 break;
500
501 Out_Send_Output (Tcb, &OInfo);
502 }
503 while (OInfo.sendalot == TRUE);
504 }
505
506 /* -- */
507

2.3.4.8.9. Quench

1
2 /* -- */
3 /* $Id: tcp_quench.c,v 1.1 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_quench.c,v $
5 * Revision 1.1 1995/12/21 11:08:30 mgream
6 * Initial revision
7 *
8 */
9 /* -- */
10
11 /* -- */
12 /* Required Externals:
13 OutQueue_EnQueue
14 _BONeS_Get_Send_Buffer_Sz
15 MsgCreate
16 */
17
18 /* -- */
19 /* - - - QUENCH PROCESSING - - -
20 |
21 | Very simple .. scale back the congestion window.
22 */
23 /* -- */
24 /* -- */
25
26 /* Quench_Process
27 |
28 | Scale it back ...
29 */
30 static void Quench_Process (Tcb)
31 TcbPtr Tcb;
32 {
33 Tcb->snd_cwnd = Tcb->t_maxseg;
34 }
35
36 /* -- */
37

2.3.4.8.10. Timer

1
2 /* -- */
3 /* $Id: tcp_timers.c,v 1.3 1995/12/21 11:08:30 mgream Exp $
4 * $Log: tcp_timers.c,v $
5 * Revision 1.3 1995/12/21 11:08:30 mgream
6 * integration fixes -- namely small bug fixes and name mismatches

10 *

 A2-90

88 | which acts as a time counter for all TCP processing.
89 */
90 static void Timer_Slow_Process (Tcb)

11 * Revision 1.1 1995/10/10 08:07:07 mgream
12 * Initial revision
13 *
14 */
15 /* -- */
16
17 /* -- */
18 /* Required Externals:
19 */
20
21 /* -- */
22 /* - - - TIMER PROCESSING - - -
23 |
24 | We do the timer processing in here; our input is a single kick
25 | every 100ms which maps out to 200ms and 500ms kicks for the fast
26 | and slow timers respectively. The fast timer kicks delayed acks,
27 | and the slow timer kicks retransmit and persist processing. Any
28 | of these three may result in output messages being generated. In
29 | addition, there are some minor housekeeping functions that are
30 | performed (the slow timer counts rtt's and a monotonic virtual
31 | clock).
32 */
33 /* -- */
34 /* -- */
35
36 /* Timer_Process
37 |
38 | Kick in here on 100ms timer expiries from BONeS which we thump
39 | down into 200ms or 500ms expiries that correspond with TCP's
40 | fast and slow timer. These timer handlers are then called if
41 | appropriate.
42 */
43 static void Timer_Process (Tcb)
44 TcbPtr Tcb;
45 {
46 Tcb->_timer_ticks = (Tcb->_timer_ticks + 1) % 10;
47
48 if ((Tcb->_timer_ticks % 2) == 0)
49 {
50 Timer_Fast_Process (Tcb);
51 }
52
53 if ((Tcb->_timer_ticks % 5) == 0)
54 {
55 Timer_Slow_Process (Tcb);
56 }
57 }
58
59 /* -- */
60
61 /* Timer_Fast_Process
62 |
63 | The fast timer is used to schedule delayed acks; so we check to
64 | see whether there is a delayed ack pending, and if so then go and
65 | pump it out via the output processing stage.
66 */
67 static void Timer_Fast_Process (Tcb)
68 TcbPtr Tcb;
69 {
70 if (Tcb->Flag_DelayedAck == TRUE)
71 {
72 Tcb->Flag_Ack = TRUE;
73 Tcb->Flag_DelayedAck = FALSE;
74
75 Output_Process (Tcb, FALSE);
76 }
77 }
78
79 /* -- */
80
81 /* Timer_Slow_Process
82 |
83 | The slow timer is used to schedule retransmits and persists, so
84 | we check to see whether either of these timers have expired and
85 | if so, then go off and handle them. Also, we ensure that we update
86 | our idle counter (which is reset in input processing) and the
87 | round trip time if we are timing a segment. Also increase tcp_now

91 TcbPtr Tcb;

 A2-91

169 }
170 }
171

92 {
93 if (Tcb->Timer_Retransmit > 0)
94 {
95 if (--Tcb->Timer_Retransmit == 0)
96 {
97 Timer_Retransmit_Process (Tcb);
98 }
99 }
100
101 if (Tcb->Timer_Persist > 0)
102 {
103 if (--Tcb->Timer_Persist == 0)
104 {
105 Timer_Persist_Process (Tcb);
106 }
107 }
108
109 Tcb->t_idle++;
110
111 if (Tcb->t_rtt > 0)
112 {
113 Tcb->t_rtt++;
114 }
115
116 Tcb->tcp_now++;
117 }
118
119 /* -- */
120
121 /* Get_Backoff_Value
122 |
123 | Compute a backoff value according to a specific shift; this is a
124 | base-2 exponential backoff, constrained at 6 bits. This is
125 | independant of the TCB.
126 */
127 static int Get_Backoff_Value (shift)
128 int shift;
129 {
130 return MIN (1 << shift, 1 << 6);
131 }
132
133 /* -- */
134
135 /* Get_Retransmit_Value
136 |
137 | Compute the retransmit value using the smoothed round trip time
138 | and the round trip variance.
139 */
140 static int Get_Retransmit_Value (Tcb)
141 TcbPtr Tcb;
142 {
143 return (Tcb->t_srtt >> TCP_RTT_SHIFT) + Tcb->t_rttvar;
144 }
145
146 /* -- */
147
148 /* Confine_Range
149 |
150 | Confine a value to be between a minimum and maximum. This is
151 | indepedant of the TCB.
152 */
153 static int Confine_Range (Value, Min, Max)
154 int Value;
155 int Min;
156 int Max;
157 {
158 if (Value < Min)
159 {
160 return Min;
161 }
162 else if (Value > Max)
163 {
164 return Max;
165 }
166 else
167 {
168 return Value;

172 /* -- */

 A2-92

250 Rxt_Update_Backoff (Tcb);
251 Rxt_Setup_Next_Timer (Tcb);
252 Rxt_Update_Congestion_Information (Tcb);

173
174 /* Rxt_Update_Backoff
175 |
176 | In processing the retransmit timer, we need to update the
177 | retransmit backoff value.
178 */
179 static void Rxt_Update_Backoff (Tcb)
180 TcbPtr Tcb;
181 {
182 if (++Tcb->t_rxtshift > TCP_MAXRXTSHIFT)
183 {
184 Tcb->t_rxtshift = TCP_MAXRXTSHIFT;
185 }
186 }
187
188 /* -- */
189
190 /* Rxt_Setup_Next_Timer
191 |
192 | We need to schedule another retransmit timer by computing the time
193 | according to our round trip time. We also reset the send sequence
194 | to be the start of our unacknowledged data, and reset the round
195 | trip time because it is not valid anymore.
196 */
197 static void Rxt_Setup_Next_Timer (Tcb)
198 TcbPtr Tcb;
199 {
200 int rxtval;
201
202 rxtval = Get_Retransmit_Value (Tcb) * Get_Backoff_Value (Tcb->t_rxtshift);
203
204 Tcb->t_rxtcur = Confine_Range (rxtval, Tcb->t_rttmin, TCPTV_REXMTMAX);
205 Tcb->Timer_Retransmit = Tcb->t_rxtcur;
206
207 if (Tcb->t_rxtshift > (TCP_MAXRXTSHIFT / 4))
208 {
209 Tcb->t_rttvar += (Tcb->t_srtt >> TCP_RTT_SHIFT);
210 Tcb->t_srtt = 0;
211 }
212
213 Tcb->snd_nxt = Tcb->snd_una;
214 Tcb->t_rtt = 0;
215 }
216
217 /* -- */
218
219 /* Rxt_Update_Congestion_Information
220 |
221 | Scale down the congestion window, because we have lost data that
222 | was in the pipe. Also, reset duplicate acks count and so on.
223 */
224 static void Rxt_Update_Congestion_Information (Tcb)
225 TcbPtr Tcb;
226 {
227 u_int win;
228
229 win = MIN (Tcb->snd_wnd, Tcb->snd_cwnd) / 2 / Tcb->t_maxseg;
230 if (win < 2)
231 win = 2;
232
233 Tcb->snd_cwnd = Tcb->t_maxseg;
234 Tcb->snd_ssthresh = win * Tcb->t_maxseg;
235 Tcb->t_dupacks = 0;
236 }
237
238 /* -- */
239
240 /* Timer_Retransmit_Process
241 |
242 | When a retransmit timer expires, then first update our backoff
243 | value, schedule a another timer event and fix up the congestion
244 | state. After which we call output processing to start pumping
245 | data back into the pipe.
246 */
247 static void Timer_Retransmit_Process (Tcb)
248 TcbPtr Tcb;
249 {

253
254 Output_Process (Tcb, FALSE);
255 }
256
257 /* -- */
258
259 /* Timer_Persist_Setup
260 |
261 | Setup the persist timer; we do this by looking at the round trip
262 | time mean and its variance, and our computed backoff value. The
263 | persist timer is then scheduled and the backoff increases for the
264 | next persist; should it come around.
265 */
266 static void Timer_Persist_Setup (Tcb)
267 TcbPtr Tcb;
268 {
269 int perval;
270
271 perval = (((Tcb->t_srtt >> 2) + Tcb->t_rttvar) >> 1) *
272 Get_Backoff_Value (Tcb->t_rxtshift);
273 Tcb->Timer_Persist = Confine_Range (perval, TCPTV_PERSMIN, TCPTV_PERSMAX);
274
275 if (Tcb->t_rxtshift < TCP_MAXRXTSHIFT)
276 {
277 Tcb->t_rxtshift++;
278 }
279 }
280
281 /* -- */
282
283 /* Timer_Persist_Process
284 |
285 | Process the persist timer, all we do here is setup another persist
286 | timer and kick output processing with an indication that we want to
287 | force output.
288 */
289 static void Timer_Persist_Process (Tcb)
290 TcbPtr Tcb;
291 {
292 Timer_Persist_Setup (Tcb);
293
294 Output_Process (Tcb, TRUE);
295 }
296
297 /* -- */
298

 A2-93

2.4. Network-Adaption Layer

2.4.1. Data Structures

2.4.1.1. IE Network-Adaption Primitive

This Data Structure has no content.

2.4.1.2. IE Network-Adaption Address List

2.4.2. Main Modules

2.4.2.1. Management

This Module implements “DFD 2: Management Processor”. This also incorporates
“PSPEC 2.1: Validate Mgmt Message and Extract IE”.
 NA Management [19-Dec-1995 17:43:36]

Process-Address-List
Declare IE
Netw ork-Adaption
Address-ListManagement

IE Portal

P Address

M Management Portal

M Address List

2.4.2.2. Management -- Process Address List

This Module implements “PSPEC 2.2: Process Address List IE”.

 __ M Process Address-List [19-Dec-1995 17:43:26]

IE
Write:
Address-List

Extract IE
Netw ork-Adaption
Address-List

M Address List

2.4.2.3. Process Network Input

This Module implements “DFD 1: Process Network Message”. This includes “PSPEC
1.1: Classify Network Message”.

Name Type Subrange Default Value
Address List INT-VECTOR

 A2-94

 Process Network Input [19-Dec-1995 17:44:29]

N-Msg Input
Msg

D
C
B
A

Process-Status

Process-Disconnect

Process-Connect

Process-Data

Msg N-Status-Ind

Msg N-Disc-Ind

Msg N-Conn-Ind

Msg N-Data-Ind

Msg Switch

M Network State

2.4.2.4. Process Network Input -- Process Connect

This Module implements “PSPEC 1.2: Process Connect Message”.

 __ PN Process Connect [19-Dec-1995 17:44:20]

N-Msg Input Write:
Netw ork
State

True

M Netw ork State

2.4.2.5. Process Network Input -- Process Disconnect

This Module implements “PSPEC 1.3: Process Disconnect Message”.

 __ PN Process Disconnect [19-Dec-1995 17:44:01]

N-Msg Input Write:
Netw ork
State

False

M Netw ork State

2.4.2.6. Process Network Input -- Process Status

This Module implements “PSPEC 1.4: Process Status Message”.

 __ PN Process Status [19-Dec-1995 17:43:51]

N-Msg Input Extract
Msg Netw ork
Status

2.4.2.7. Process Network Input -- Process Data

This Module implements “PSPEC 1.5: Process Data Message”.

 __ PN Process Data [19-Dec-1995 17:44:10]

N-Msg Input
M

M
SAddr
DAddr
ECN
HopCnt
C
L

Extract
Msg Netw ork
Data

 A2-95

2.4.2.8. Process Network Output

This Module implements “PSPEC 3: Construct Outgoing Message”.
 __ NA Process Network Output [19-Dec-1995 17:44:42]

Data-Length

N-Msg OutputM

A

T
F

Construct
Msg Network
Data Req

IU[0,N-1]

Network
State

Create Msg
Application
Data

R
ea

d:
A

dd
re

ss
Li

st

Length:
Address
List

Switch
== ?True

M Address List

M Network State

2.4.3. Support Modules

2.4.3.1. Construct IE Network-Adaption Address List

 Construct IE Network-Adaption Address-List [19-Dec-1995 17:43:04]

Address-List IECreate IE
Netw ork-Adaption
Address-List

Insert
Address
List

2.4.3.2. Extract IE Network-Adaption Address List

 Extract IE Network-Adaption Address-List [19-Dec-1995 17:43:14]

IE
Address-List

DS

F

Select
Address
List

 A2-96

2.5. Transport-Adaption Layer

2.5.1. Data Structures

2.5.1.1. IE Transport-Adapation Primitive

This Data Structure has no content.

2.5.1.2. IE Transport-Adaption Connect

2.5.1.3. IE Transport-Adaption Disconnect

This Data Structure has no content.

2.5.2. Main Modules

2.5.2.1. Management

This Module implements “DFD 2: Management Processor”. This also includes
“PSPEC 2.1: Validate Mgmt Message and Extract IE”.
 TA Management [19-Dec-1995 17:38:27]

Msg-Out

Process-Disconnect

Process-Connect

Declare IE
Transport-Adaption
Disconnect

Declare IE
Transport-Adaption
ConnectManagement

IE Portal

P Address

M Management Portal

2.5.2.2. Management -- Process Connect

This Module implements “PSPEC 2.2: Process Connect IE”.

 __ M Process Connect [19-Dec-1995 17:38:16]

IE MsgCreate Msg
Transport
Connect Request

Extract IE
Transport-Adaption
Connect

2.5.2.3. Management -- Process Disconnect

This Module implements “PSPEC 2.3: Process Disconnect IE”.

 __ M Process Disconnect [19-Dec-1995 17:38:07]

IE MsgCreate Msg
Transport
Disconnect
Request

Extract IE
Transport-Adaption
Disconnect

2.5.2.4. Process Transport Input

Name Type Subrange Default Value
Destination Address INTEGER [0,512) 0

 A2-97

This Module implements “DFD 1: Process Transport Message”. This includes
“PSPEC 1.1: Classify Transport Message”, “PSPEC 1.2: Process Connect Message”,
“PSPEC 1.3: Process Disconnect Message” and “PSPEC 1.4: Process Data Message”.

 Process Transport Input [19-Dec-1995 17:37:56]

T-Msg Input

Sink

2.5.2.5. Process Transport Output

This Module implements “PSPEC 3: Construct Outgoing Message”.
 __ TA Process Transport Output [19-Dec-1995 17:37:44]

Data-Length T-Msg Output
M Create Msg

Transport
Data Request

Create Msg
Application
Data

2.5.3. Support Modules

2.5.3.1. Create IE Transport-Adapation Connect

 Create IE Transport-Adaption Connect [19-Dec-1995 17:38:44]

Address IEInsert Destination
Address

Create IE
Transport-Adaption
Connect

2.5.3.2. Create IE Transport-Adaption Disconnect

 Create IE Transport-Adaption Disconnect [19-Dec-1995 17:38:54]

Trigger IECreate IE
Transport-Adaption
Disconnect

2.5.3.3. Extract IE Transport-Adaption Connect

 Extract IE Transport-Adaption Connect [19-Dec-1995 17:39:03]

IE AddressDS
FSelect Destination

Address

2.5.3.4. Extract IE Transport-Adaption Disconnect

 Extract IE Transport-Adaption Disconnect [19-Dec-1995 17:39:13]

IE Trigger

 A2-98

2.6. Routing-Module

2.6.1. Data Structures

2.6.1.1. IE Routing-Module Primitive

This Data Structure has no content.

2.6.1.2. IE Routing-Module Route-Entry

2.6.2. Main Modules

2.6.2.1. Routing Switch

This Module implements “DFD 1: Routing Module”. This also incorporates “PSPEC
1.2: Drop Invalid Message”.

 Routing-Switch [19-Dec-1995 17:52:40]

Msg-Input

Msg-OutputInvalid

Invalid

Compute-Next-Hop

SinkVerify-Message

M Output Inferface

M Interface Load Status

M Interface Availability Status

M Routing Table

2.6.2.2. Routing Switch -- Verify Input Message

This Module implements “PSPEC 1.1: Verify and Update Incoming Message”.
 __ RS Verify Input Message [19-Dec-1995 17:52:03]

Msg-Input Valid-Msg

Invalid-Msg

1
2

T

F M

HopCnt
M

M
HopCnt

M

Execute
In Order

Gate

I <=
0 ?

1-

Set Msg Network
Data Field:
Hop Count

Get Msg Network
Data Field:
Hop Count

2.6.2.3. Routing Switch -- Compute Next Hop

This Module implements “PSPEC 1.3: Compute Next Hop”. This BONeS
implementation is a potential target for ‘C’ implementation, as the iterative
mechanism is repeated for every Message that the Routing Module processes.

Name Type Subrange Default Value
End-System Address INTEGER [0,512) 0
Network Interface INTEGER [0,512) 0
Cost INTEGER (-Inf,+Inf) 0

 A2-99

 __ RS Compute Next Hop [19-Dec-1995 17:52:24]

Msg-Input

Invalid-Msg

Valid-Msg

T

F

12

T
F

A
I

DAddr

M
M

T
F

A

Route
Interface

Gate

Write:
Output
InterfaceMsg-Input == Route

Cost Maximum
?

Route
Cost

Route
Cost

One_Way

One_Way

Ex
ec

ut
e

In
 O

rd
er

G
at

e

Write:
Route Interface

Write:
Route
CostR<

Switch

Compute-Route-Cost
Get Msg Network
Data Field:
DAddr

Msg-Input

Switch

== ?

True

Get Interface
Availability
Status

Get Interface
Count

Int Do
(0,N-1)

Route
Cost Maximum

Write:
Route
Cost

Write:
Msg-Input

M auto: Msg-Input
M auto: Route Cost

M auto: Route Interface

P static: Route Cost Maximum
P static: Load Gain

M Interface Load Status

M Interface Availability Status

M Routing Table

M Output Inferface

2.6.2.4. Routing Switch -- Compute Next Hop -- Compute Route Cost

This Module implements “FUNCTION 1.3.1: ComputeCost”. The “Load Gain” is a
parameter as specified in the algorithm given in the design.
 __ RS Compute Route Cost [19-Dec-1995 17:52:13]

Interface Number

Address

Invalid

Cost
1
2

A
I

R+
Load
GainGate

Execute
In Order

Get Routing
Table Entry

Get Interface
Load Status

M Interface Load Status

M Routing Table

P Load Gain

2.6.2.5. Management

This Module implements “DFD 2: Management Processor”. This also incorporates
“PSPEC 2.1: Validate Mgmt Message and Extract IE”.
 RM Management [19-Dec-1995 17:50:31]

M Process-Route-Entry
Declare IE
Routing-Module
Route-EntryManagement

IE Portal

P Address
M Management Portal

M Routing Table

2.6.2.6. Management -- Process Route Entry

This Module implements “PSPEC 2.2: Process Routing Entry IE”.

 A2-100

 __ M Process Route-Entry [19-Dec-1995 17:50:39]

IE Route

C
I
A

C
I
A

Set Valid
Routing
Table Entry

Extract IE
Routing-Module
Route-Entry

M Routing Table

2.6.2.7. Network Interface

This Module implements “DFD 4: Network Layer Interface”.
 Network-Interface [19-Dec-1995 17:51:38]

Data Msg Output Data Msg Input

Lower Layer Input Lower Layer Output

DCBA

M
sg

Pr
oc

es
s

St
at

us
-In

di
ca

tio
n

Pr
oc

es
s

D
is

co
nn

ec
t-I

nd
ic

at
io

n

Pr
oc

es
s

D
at

a-
In

di
ca

tio
n-

In
pu

t

Pr
oc

es
s

C
on

ne
ct

-In
di

ca
tio

n

Pr
oc

es
s

D
at

a-
In

di
ca

tio
n-

O
ut

pu
t

D
ec

la
re

N
 S

ta
tu

s
In

d

D
ec

la
re

N
 D

is
c

In
d

D
ec

la
re

N
 C

on
ne

ct
In

d

D
ec

la
re

N
 D

at
a

In
d

M
sg

 S
w

itc
h

M Interface Load Status

M Interface Availability Status

P Interface Address

2.6.2.8. Network Interface -- Process Connect Indication

This Module implements “PSPEC 4.2: Process Connect Message”.

 A2-101

 __ NI Process Connect-Indication [19-Dec-1995 17:51:29]

Connect Msg
S

A
True Set Interface

Availability
StatusInterface

Address

M Interface Availability Status

P Interface Address

2.6.2.9. Network Interface -- Process Disconnect Indication

This Module implements “PSPEC 4.3: Process Disconnect Message”.

 __ NI Process Disconnect-Indication [19-Dec-1995 17:51:00]

Disconnect Msg
S

A
False Set Interface

Availability
StatusInterface

Address

M Interface Availability Status

P Interface Address

2.6.2.10. Network Interface -- Process Status Indication

This Module implements “PSPEC 4.4: Process Status Message”.
 __ NI Process Status-Indication [19-Dec-1995 17:50:50]

Status Msg

L
A

IE
C
B
A

Extract
IE Network
Load-Factor

Declare
IE Network
Load-Factor

Set Interface
Load Status

IE Switch
Extract
Msg Network
Status

Interface
AddressM Interface Load Status

P Interface Address

2.6.2.11. Network Interface -- Process Data Indication Input

This Module implements “PSPEC 4.5: Process Data Message”.

 __ NI Process Data-Indication Input [19-Dec-1995 17:51:20]

Data-Input Data-Output

2.6.2.12. Network Interface -- Process Data Indication Output

This Module implements “PSPEC 4.6: Process Outgoing Data Message”.
 __ NI Process Data-Indication Output [19-Dec-1995 17:51:10]

Data-Input Data-Output
M MT

F

A

Convert Msg
Network Data
Ind To Req== ?

Interface
Address

Switch

True

Get Interface
Availability
Status

M Interface Availability Status

P Interface Address

 A2-102

2.6.2.13. Get Interface Availability Status

 Get Interface Availability Status [19-Dec-1995 17:48:15]

Interface Address

Status
Declare
Boolean

Interface
Availability
Status

M Interface Availability Status

2.6.2.14. Get Interface Count

 Get Interface Count [19-Dec-1995 17:48:44]

Trigger LengthInterface
Availability
Status: Length

M Interface Availability Status

2.6.2.15. Get Interface Load Status

 Get Interface Load Status [19-Dec-1995 17:48:54]

Interface Address

LoadInterface
Load Status

M Interface Load Status

2.6.2.16. Get Routing Table Entry

 Get Routing Table Entry [19-Dec-1995 17:49:14]

Interface Number

Address

Invalid

Cost

T

F

R ==
0 ?

Routing
Table

M Routing Table

2.6.2.17. Set Interface Availability Status

 A2-103

 Set Interface Availability Status [19-Dec-1995 17:49:23]

Interface Address

Status OKWrite: Interface
Availability
Status

M Interface Availability Status

2.6.2.18. Set Interface Load Status

 Set Interface Load Status [19-Dec-1995 17:49:39]

Interface Address

Load Factor OKWrite: Interface
Load Status

M Interface Load Status

2.6.2.19. Set Invalid Routing Table Entry

 Set Invalid Routing Table Entry [19-Dec-1995 17:49:58]

Interface Number

Address

Trigger

0.0
RMatrix
Mem Set

M Routing Table

2.6.2.20. Set Valid Routing Table Entry

 Set Valid Routing Table Entry [19-Dec-1995 17:50:08]

Cost

Interface Number

Address

Trigger

RMatrix
Mem Set

M Routing Table

2.6.3. Support Modules

2.6.3.1. Construct IE Routing-Module Route Entry

 A2-104

 Construct IE Routing-Module Route-Entry [19-Dec-1995 17:47:54]

Cost

Interface

Address

IE RouteInsert
Cost

Insert
Network
Interface

Insert End-System
Address

Create IE
Routing-Module
Route-Entry

2.6.3.2. Extract IE Routing-Module Route Entry

 Extract IE Routing-Module Route-Entry [19-Dec-1995 17:48:03]

IE Route
Cost

Interface

Address

DS
F

DS

F

DS
F

I->R
Select
Cost

Select
Netw ork
Interface

Select End-System
Address

 A2-105

2.7. Generator

2.7.1. Data Structures

2.7.1.1. IE Generator Primitive

This Data Structure has no content.

2.7.1.2. IE Generator Setup-Primitive

2.7.1.3. IE Generator Setup-FTP

2.7.1.4. IE Generator Setup-Statistical

2.7.1.5. IE Generator Setup-Telnet

2.7.1.6. IE Generator Stop

This Data Structure has no content.

2.7.2. Main Modules

2.7.2.1. Process Cancel

This Module implements “PSPEC 1: Cancel Timers”.

Name Type Subrange Default Value
Maximum Time REAL (0,+Inf) 1.0E9
Maximum Byte Count INTEGER (0,+Inf) 1000000000
Maximum Element Count INTEGER (0,+Inf 1000000000

Name Type Subrange Default Value
Maximum Time REAL (0,+Inf) 1.0E9
Maximum Byte Count INTEGER (0,+Inf) 1000000000
Maximum Element Count INTEGER (0,+Inf) 1000000000

Name Type Subrange Default Value
Maximum Time REAL (0,+Inf) 1.0E9
Maximum Byte Count INTEGER (0,+Inf) 1000000000
Maximum Element Count INTEGER (0,+Inf) 1000000000
Time Characteristic Statistical

Parameter

Space Characteristic Statistical
Parameter

Name Type Subrange Default Value
Maximum Time REAL (0,+Inf) 1.0E9
Maximum Byte Count INTEGER (0,+Inf) 1000000000
Maximum Element Count INTEGER (0,+Inf) 1000000000

 __ G Process Cancel [19-Dec-1995 17:33:14]

Cancel
1
2

T

F

Execute
In Order

>= 0
?

Cancel
Timer

Residual
Time

Int Do
0->16

E Generator Timer

 A2-106

2.7.2.2. Process Setup

This Module implements “DFD 3: Setup Generator”. This also includes “PSPEC 3.1:
Classify Type of Setup IE”.
 Process Setup [19-Dec-1995 17:35:48]

Cancel

IE Setup

Data Length

1
2

Cancel

Data-Length

IE

IE Data Length

IE Data Length

IE Data Length

IE
C
B
A

Declare IE
Generator
Setup-Statistical

Declare IE
Generator
Setup-Telnet

Declare
IE Generator
Setup-FTP

Execute
In Order

Filter-Output

Process-Filter-Setup

Process-Statistical

Process-Telnet

Process-FTP

IE Switch

M Maximum Elements

M Maximum Bytes

M Maximum Time

E Generator Timer

2.7.2.3. Process Setup -- Process Filter Setup

This Module implements “PSPEC 3.2: Setup Filter Parameters”.

 __ GS Process Filter Setup [19-Dec-1995 17:35:33]

IE Setup
IE

T
B
E

R+

TNow

Write:
Maximum
Elements

Write:
Maximum
Bytes

Write:
Maximum
Time

Extract IE
Generator
Setup-Primitive

M Maximum Elements

M Maximum Bytes

M Maximum Time

2.7.2.4. Process Setup -- Process Telnet

This Module implements “DFD 3.3: Telnet Processing”.

 A2-107

 __ GS Process Telnet [19-Dec-1995 17:34:57]

IE Setup

Data Length

1
2

T
F

STUB REAL
CONSTANT

STUB REAL
CONSTANT

Truncate

Execute
In Order

Timer
Handle

I==

Switch

Timer
Handle

Service
Timer

Start
Timer

E Generator Timer

P Timer Handle

2.7.2.5. Process Setup -- Process FTP

This Module implements “DFD 3.4: FTP Processing”.

 __ GS Process FTP [19-Dec-1995 17:35:18]

IE Setup Data Length
DUMMY INTEGER
CONSTANT

E Generator Timer

P Timer Handle

2.7.2.6. Process Setup -- Process Statistical

This Module implements “DFD 3.5: Statistical Processing”.
 __ GS Process Statistical [19-Dec-1995 17:35:08]

IE Setup

Data Length

1
2

T
F

IE T

S

Generate
Statistical
Parameter

Truncate

Generate
Statistical
Parameter

Execute
In Order

Timer
Handle

I==

Switch

Timer
Handle

Service
Timer

Start
Timer

Space
Characteristic

Time Characteristic

Gate

Write: Space
Characteristic

Write: Time
Characteristic

Extract IE
Generator
Setup-Statistical

M Time Characteristic

M Space Characteristic

E Generator Timer

P Timer Handle

 A2-108

2.7.2.7. Process Setup -- Filter Output

This Module implements “PSPEC 3.6: Filter Output”.

 Filter Output [19-Dec-1995 17:36:30]

Input Data-Length

Cancel

Output Data-Length

Valid Invalid

Valid Invalid

Valid Invalid

Validate-Max-Time

Validate-Max-Bytes

Validate-Max-Elements

M Maximum Elements

M Maximum Bytes

M Maximum Time

2.7.2.8. Process Setup -- Filter Output -- Validate Max Bytes

This Module implements “PSPEC 3.6: Filter Output”.
 __ FO Validate Max Bytes [19-Dec-1995 17:36:19]

Input Data-Length

Valid Data-Length Invalid Data-Length

T

F
T

F
I+

Maximum
Bytes

Gate

I <
0 ?

I-Maximum
Bytes

I >
0 ?

Maximum
Bytes

Write:
Maximum
Bytes

M Maximum Bytes

2.7.2.9. Process Setup -- Filter Output -- Validate Max Elements

This Module implements “PSPEC 3.6: Filter Output”.

 A2-109

 __ FO Validate Max Elements [19-Dec-1995 17:36:09]

Input Data-Length

Valid Data-Length Invalid Data-Length

T

F

Gate
Write:
Maximum
Elements

1-Maximum
Elements

I >
0 ?

Maximum
Elements

M Maximum Elements

2.7.2.10. Process Setup -- Filter Output -- Validate Max Time

This Module implements “PSPEC 3.6: Filter Output”.

 __ FO Validate Max Time [19-Dec-1995 17:35:59]

Input Data-Length

Valid Data-Length
Invalid Data-Length

T
F

R<
Sw itch

TNow

Maximum
Time

M Maximum Time

2.7.2.11. Get TCPLIB Integer Quantity

 Get TCPLIB Integer Quantity [19-Dec-1995 17:34:24]

Trigger Data-Length

P Name

P Element

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCPLib.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User INIT Below Here */
13
14 /* -- */

 A2-110

15 /* 0. Data */
16 char * profileId = Name;
17 char * parameterId = Element;
18 Function * Func = GetFunction (profileId, parameterId);
19
20 /* 1. Seed the random number generator.
21 */
22 srand48 (time (NULL) ^ getpid ());
23
24 /* 2. Verify that the supplied profileId and parameterId are
25 correct; we only need to do this at the start of the
26 simulation since the names are invariant.
27 */
28 if (Func == NULL)
29 {
30 char * modname = MODULE_NAMESTRING;
31 char message[256];
32 sprintf (message, "Cannot locate (%s, %s)", profileId, parameterId);
33 __ReportError (modname, message);
34 }
35 else if (Func->Type != IntegerFunction)
36 {
37 char * modname = MODULE_NAMESTRING;
38 char message[256];
39 sprintf (message, "(%s, %s) is not a Integer type",
40 profileId, parameterId);
41 __ReportError (modname, message);
42 }
43
44 __Bfree (profileId);
45 __Bfree (parameterId);
46 /* -- */
47
48 /* User INIT Above Here */
49
50 ...
51
52 /* User RUN Below Here */
53
54 /* -- */
55 /* 1. Locate the parameterIds for this particular TCPLIB quanity,
56 by getting the profileId and parameterId names as they appear
57 as arguments. Also attempt to load the function handler for
58 this quantity.
59 */
60 char * profileId = Name;
61 char * parameterId = Element;
62 Function * Func = GetFunction (profileId, parameterId);
63
64 /* 2. Free up resources
65 */
66 __Bfree (profileId);
67 __Bfree (parameterId);
68 __FreeArc (Trigger);
69
70 /* 3. We considered errors already, so silent ignore
71 */
72 if (Func != NULL) {
73 int IntValue = INT_FUNCTION (Func) ();
74 __PutINTEGERVal (Data_Length, IntValue);
75 }
76 /* -- */
77
78 /* User RUN Above Here */
79

2.7.2.12. Get TCPLIB Real Quantity

 A2-111

 Get TCPLIB Real Quantity [19-Dec-1995 17:34:32]

Trigger Data-Length

P Name

P Element

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/TCPLib.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User INIT Below Here */
13
14 /* -- */
15 /* 0. Data */
16 char * profileId = Name;
17 char * parameterId = Element;
18 Function * Func = GetFunction (profileId, parameterId);
19
20 /* 1. Seed the random number generator.
21 */
22 srand48 (time (NULL) ^ getpid ());
23
24 /* 2. Verify that the supplied profileId and parameterId are
25 correct; we only need to do this at the start of the
26 simulation since the names are invariant.
27 */
28 if (Func == NULL)
29 {
30 char * modname = MODULE_NAMESTRING;
31 char message[256];
32 sprintf (message, "Cannot locate (%s, %s)", profileId, parameterId);
33 __ReportError (modname, message);
34 }
35 else if (Func->Type != FloatFunction)
36 {
37 char * modname = MODULE_NAMESTRING;
38 char message[256];
39 sprintf (message, "(%s, %s) is not a Real type", profileId, parameterId);
40 __ReportError (modname, message);
41 }
42
43 __Bfree (profileId);
44 __Bfree (parameterId);
45 /* -- */
46
47 /* User INIT Above Here */
48
49 ...
50
51 /* User RUN Below Here */
52
53 /* -- */
54 /* 1. Locate the parameterIds for this particular TCPLIB quanity,
55 by getting the profileId and parameterId names as they appear
56 as arguments. Also attempt to load the function handler for
57 this quantity.
58 */
59 char * profileId = Name;
60 char * parameterId = Element;
61 Function * Func = GetFunction (profileId, parameterId);
62
63 /* 2. Free up resources
64 */

 A2-112

65 __Bfree (profileId);
66 __Bfree (parameterId);
67 __FreeArc (Trigger);
68
69 /* 2. We considered errors already, so silent ignore
70 */
71 if (Func != NULL) {
72 double Value = FLOAT_FUNCTION (Func) ();
73 __PutREALVal (Data_Length, Value);
74 }
75 /* -- */
76
77 /* User RUN Above Here */
78

2.7.3. Support Modules

2.7.3.1. Construct IE Generator Setup FTP

 Construct IE Generator Setup-FTP [19-Dec-1995 17:33:26]

Trigger IECreate IE
Generator
Setup-FTP

2.7.3.2. Construct IE Generator Setup Statistical

 Construct IE Generator Setup-Statistical [19-Dec-1995 17:33:36]

Space

Time

IEInsert Space
Characteristic

Insert Time
Characteristic

Create IE
Generator
Setup-Statistical

2.7.3.3. Construct IE Generator Setup Telnet

 Construct IE Generator Setup-Telnet [19-Dec-1995 17:33:45]

Trigger IECreate IE
Generator
Setup-Telnet

2.7.3.4. Construct IE Generator Stop

 Construct IE Generator Stop [19-Dec-1995 17:33:54]

Trigger IECreate
IE Generator
Stop

2.7.3.5. Extract IE Generator Setup Primitive

 A2-113

 Extract IE Generator Setup-Primitive [19-Dec-1995 17:34:04]

IE Setup
Time

Bytes

Elements
DS

F
DS
F

DS

F

Select Maximum
Element
Count

Select Maximum
Byte CountSelect

Maximum
Time

2.7.3.6. Extract IE Generator Setup Statistical

 Extract IE Generator Setup-Statistical [19-Dec-1995 17:34:13]

IE Setup

Space

TimeDS
F

DS
F

Select Time
CharacteristicSelect Space

Characteristic

2.7.4. ‘C’ Modules

There is a single interface module that bridges between the TCP Library itself, and the
BONeS Primitive Modules. In addition, the TCP Library is provided as source code
that compiles into a library. For the purposes of this project, the source code was
concatenated into a single file and the source included -- this does mean that two
separate instances of the TCP Library are compiled into the simulation, however this
is an insignificant overhead.

2.7.4.1. TCP Library

1
2 /* -- */
3 /* Module: TCPLIB
4 * Filename: TCPLib.c
5 * Author: Matthew Gream (90061060)
6 * Description: provides a generic interface to lower level TCPLIB
7 * functions. specific functions can be obtained given a set of
8 * identifiers
9 * RCS: $Id: TCPLib.c,v 1.1 1995/12/20 08:03:33 mgream Exp $
10 */
11 /* -- */
12 #ifdef TEST
13 # include <stdio.h>
14 # include <string.h>
15 # include <time.h>
16 #endif
17
18 #ifndef TEST
19 # define perror(msg) __ReportError (MODULE_NAMESTRING, msg)
20 #endif
21 # include "/u/mgream/BONeS/Constructed/tcplib/tcplib_src.c"
22
23 /* -- */
24 extern long time ();
25 extern void srand48 ();
26 extern int getpid ();
27
28 /* -- */
29 /* convert character into upper case */
30 static char my_toupper (ch)
31 char ch;
32 {
33 if (ch >= 'a' && ch <= 'z')
34 return (ch - 'a' + 'A');
35 else
36 return (ch);

 A2-114

37 }

 A2-115

115 for (Prof = Profiles; Prof->Ident != NULL; Prof++) {
116 if (my_strcasecmp (Prof->Ident, Ident) == 0)
117 return Prof->Parameters;

38
39 /* -- */
40 /* compare without regard to case */
41 static int my_strcasecmp (stra, strb)
42 char * stra;
43 char * strb;
44 {
45 while (my_toupper (*stra) == my_toupper (*strb)) {
46 if (*stra == '\0')
47 return 0;
48 stra++;
49 strb++;
50 }
51 return 1;
52 }
53
54 /* -- */
55 /* define virtual functions :-) */
56 typedef enum {
57 FloatFunction,
58 IntegerFunction
59 } FunctionType;
60 typedef int (*IntegerFunc) ();
61 typedef float (*FloatFunc) ();
62 typedef struct Function_ST {
63 FunctionType Type;
64 IntegerFunc Func;
65 } Function;
66 #define INT_FUNCTION(f) (*(*(IntegerFunc *)(&(f)->Func)))
67 #define FLOAT_FUNCTION(f) (*(*(FloatFunc *)(&(f)->Func)))
68
69 /* -- */
70 /* parameter type, and associated function */
71 typedef struct Parameter_ST {
72 char * Ident;
73 Function GetValue;
74 } Parameter;
75
76 /* -- */
77 /* profile type, and associated parameters */
78 typedef struct Profile_ST {
79 char * Ident;
80 Parameter * Parameters;
81 } Profile;
82
83 /* -- */
84 /* parameters for Telnet profile */
85 static Parameter Parameters_Telnet[] = {
86 { "Packet Size", { IntegerFunction, telnet_pktsize } },
87 { "Interarrival Time", { FloatFunction, telnet_interarrival } },
88 { "Conversation Size", { FloatFunction, telnet_duration } },
89 { NULL, { 0, NULL } },
90 };
91
92 /* -- */
93 /* parameters for FTP profile */
94 static Parameter Parameters_FTP[] = {
95 { "Number Items", { IntegerFunction, ftp_nitems } },
96 { "Item Size", { IntegerFunction, ftp_itemsize } },
97 { "Control Size", { IntegerFunction, ftp_ctlsize } },
98 { NULL, { 0, NULL } },
99 };
100
101 /* -- */
102 /* list of known profiles */
103 static Profile Profiles[] = {
104 { "Telnet", Parameters_Telnet },
105 { "FTP", Parameters_FTP },
106 { NULL, NULL },
107 };
108
109 /* -- */
110 /* locate the list of parameters for a given profile */
111 static Parameter * GetParameterFromProfile (Ident)
112 char * Ident;
113 {
114 Profile * Prof;

118 }
119 return NULL;
120 }
121
122 /* -- */
123 /* locate a function call for the given set of parameters */
124 static Function * GetFunctionFromParameter (Param, Ident)
125 Parameter * Param;
126 char * Ident;
127 {
128 for (; Param->Ident != NULL; Param++) {
129 if (my_strcasecmp (Param->Ident, Ident) == 0)
130 return &Param->GetValue;
131 }
132 return NULL;
133 }
134
135 /* -- */
136 /* locate a function call for a given (profile, parameter) tuple */
137 static Function * GetFunction (ProfileIdent, ParameterIdent)
138 char * ProfileIdent;
139 char * ParameterIdent;
140 {
141 Parameter * Param = GetParameterFromProfile (ProfileIdent);
142 if (Param == NULL)
143 return NULL;
144 return GetFunctionFromParameter (Param, ParameterIdent);
145 }
146
147 /* -- */
148 /* Test Code */
149
150 #ifdef TEST
151
152 void main (argc, argv)
153 int argc;
154 char ** argv;
155 {
156 Function * Func;
157
158 srand48 ((long)(time (NULL) ^ getpid ()));
159
160 printf (" (%s, %s) ==> ", argv[1], argv[2]);
161 Func = GetFunction (argv[1], argv[2]);
162 if (Func == NULL)
163 printf ("Invalid\n");
164 else
165 {
166 if (Func->Type == IntegerFunction)
167 printf ("[int] %u\n", INT_FUNCTION (Func) ());
168 else if (Func->Type == FloatFunction)
169 printf ("[float] %f\n", FLOAT_FUNCTION (Func) ());
170 }
171 }
172
173 #endif
174
175 /* -- */
176

 A2-116

2.8. Management

2.8.1. Data Structures

2.8.1.1. Msg Management Primitive
Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

2.8.1.2. Msg Management Set Primitive
Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Parameter IE Primitive
Address INTEGER [0,512) 0

2.8.1.3. Msg Management Set Indication
Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0
Parameter IE Primitive
Address INTEGER [0,512) 0

2.8.2. Main Modules

2.8.2.1. Initialise

This Module implements “PSPEC 6: Open and Initialise”.

 __ M Initialise [19-Dec-1995 17:24:51]

TriggerOpen
File
(READ)

Init

M File

P Filename

2.8.2.2. Read Time and Wait

This Module implements “PSPEC 1: Read and Wait for Next Entry”.

 __ M Read Time and Wait [19-Dec-1995 17:25:11]

Trigger

Failure

Process

T

F

Abs
Delay== 0.0

?
Read
File
(REAL)

M File

 A2-117

2.8.2.3. Process Addressing Information

This Module implements “PSPEC 2: Extract Address and Module”.

 __ M Process Addressing Information [19-Dec-1995 17:25:01]

Trigger

Failure

Module

Write:
Address

Read File
(INTEGER)Read File

(INTEGER)

M File

M Address

2.8.2.4. Process Module Command

This Module implements “DFD 3: Generate Specific IE”.
 Process Module Command [19-Dec-1995 17:25:35]

Module

Failure

Success

IE

IE

IE

IE

IE

IE

IE

D
C
B
A

NONE

D
C
B
A

NONE
Process-Generator

Process-Transport-Adaption

Process-Transport

Process-Routing-Module

Process-Network-Adaption

Process-Network

Process-Datalink

Switch
4-Way

Switch
4-Way

M File

2.8.2.5. Process Module Command -- Process Datalink

This Module implements “PSPEC 3.7: Process Datalink IE”.
 Process Datalink [19-Dec-1995 17:25:48]

Trigger

Failure

Success

D
C
B
A

NONE

Process-StateSwitch
4-WayRead File

(INTEGER)

M Fi le

2.8.2.6. Process Module Command -- Process Datalink -- Process State

This Module implements “FUNCTION 3.7.1: Process State IE”.
 __ PD Process State [19-Dec-1995 17:26:04]

Trigger

Failure

IE
T

F

Construct
IE Datalink
StateFalse

True== 0
?Read Fi le

(INTEGER)

M File

 A2-118

2.8.2.7. Process Module Command -- Process Generator

This Module implements “PSPEC 3.8: Process Generator IE”.
 Process Generator [19-Dec-1995 17:26:16]

Trigger

Failure

Success

D
C
B
A

NONE

Process-Startup

Process-Stop

Switch
4-WayRead File

(INTEGER)

M Fi le

2.8.2.8. Process Module Command -- Process Generator -- Process Stop

This Module implements “FUNCTION 3.8.1: Process Stop IE”.

 __ PG Process Stop [19-Dec-1995 17:28:49]

Trigger

Failure

IEConstruct
IE Generator
Stop

M File

2.8.2.9. Process Module Command -- Process Generator -- Process Startup

This Module implements “FUNCTION 3.8.2: Process Setup IE”.
 Process Startup [19-Dec-1995 17:26:32]

Trigger
Failure

IEProcess
Startup
TypeRead

File
(REAL)

Insert Maximum
Element
Count

Insert Maximum
Byte Count

Insert
Maximum
Time

Read File
(INTEGER)

Read File
(INTEGER)

M File

2.8.2.10. Process Module Command -- Process Generator -- Process Startup --
Process Startup Statistical

This Module implements “FUNCTION 3.8.3: Process Stat Info”.
 Process Startup Statistical [19-Dec-1995 17:28:33]

Trigger

Failure

IET

S

Construct
IE Generator
Setup-StatisticalExtract

Statistical
Parameter

Extract
Statistical
Parameter

M File

2.8.2.11. Process Module Command -- Process Generator -- Process Startup --
Process Startup Statistical -- Extract Statistical Parameter

This Module implements “FUNCTION 3.8.3: Process Stat Info”.

 A2-119

 __ PSS Extract Statistical Parameter [19-Dec-1995 17:28:17]

Trigger

Failure

Statistical Param

D
C
B
A

NONE

D
C
B
A

NONE

Statistical-Poisson

Statistical-Exponential

Statistical-Uniform

Statistical-Normal

Statistical-Constant

Switch
4-Way

Switch
4-WayRead File

(INTEGER)

M File

2.8.2.12. Process Module Command -- Process Generator -- Process Startup --
Process Startup Statistical -- Extract Statistical Parameter Constant

This Module implements “FUNCTION 3.8.3: Process Stat Info”.
 __ PSS Extract Statistical Parameter Constant [19-Dec-1995 17:28:06]

Trigger

Failure

Statistical ParamInsert
Real

Create Statistical
Parameter
Constant

Read
File
(REAL)

M File

2.8.2.13. Process Module Command -- Process Generator -- Process Startup --
Process Startup Statistical -- Extract Statistical Parameter Exponential

This Module implements “FUNCTION 3.8.3: Process Stat Info”.
 __ PSS Extract Statistical Parameter Exponential [19-Dec-1995 17:27:56]

Trigger

Failure

Statistical ParamInsert
Mean

Create Statistical
Parameter
Exponential

Read
File
(REAL)

M File

2.8.2.14. Process Module Command -- Process Generator -- Process Startup --
Process Startup Statistical -- Extract Statistical Parameter Normal

This Module implements “FUNCTION 3.8.3: Process Stat Info”.
 __ PSS Extract Statistical Parameter Normal [19-Dec-1995 17:27:46]

Trigger

Failure

Statis tical Param
1
2

Insert
VarianceInsert

Mean
Create Statistical
Parameter
Normal

Execute
In Order

Read
File
(REAL)

Read
File
(REAL)

M File

2.8.2.15. Process Module Command -- Process Generator -- Process Startup --
Process Startup Statistical -- Extract Statistical Parameter Poisson

This Module implements “FUNCTION 3.8.3: Process Stat Info”.

 A2-120

 __ PSS Extract Statistical Parameter Poisson [19-Dec-1995 17:27:35]

Trigger

Failure

Statistical ParamInsert Average
Event Rate

Create Statistical
Parameter
Poisson

Read
File
(REAL)

M File

2.8.2.16. Process Module Command -- Process Generator -- Process Startup --
Process Startup Statistical -- Extract Statistical Parameter Uniform

This Module implements “FUNCTION 3.8.3: Process Stat Info”.
 __ PSS Extract Statistical Parameter Uniform [19-Dec-1995 17:27:24]

Trigger

Failure

Statis tical Param
1
2Execute

In Order

Insert
Upper
Bound

Insert
Lower
Bound

Create Statistical
Parameter
Uniform

Read
File
(REAL)

Read
File
(REAL)

M File

2.8.2.17. Process Module Command -- Process Generator -- Process Startup --
Process Startup FTP

This Module implements “FUNCTION 3.8.2: Process Setup IE”.

 __ PS Process Startup FTP [19-Dec-1995 17:26:43]

Trigger

Failure

IEConstruct
IE Generator
Setup-FTP

M File

2.8.2.18. Process Module Command -- Process Generator -- Process Startup --
Process Startup Telnet

This Module implements “FUNCTION 3.8.2: Process Setup IE”.

 __ PS Process Startup Telnet [19-Dec-1995 17:26:52]

Trigger

Failure

IEConstruct
IE Generator
Setup-Telnet

M File

2.8.2.19. Process Module Command -- Process Generator -- Process Startup --
Process Startup Type

This Module implements “FUNCTION 3.8.2: Process Setup IE”.

 A2-121

 __ PS Process Startup Ty pe [19-Dec-1995 17:27:02]

Trigger

Failure

IE

D
C
B
A

NONE

Process-Statistical

Process-FTP

Process-Telnet

Switch
4-WayRead File

(INTEGER)

M File

2.8.2.20. Process Module Command -- Process Network-Adaption

This Module implements “PSPEC 3.3: Process Network-Adaption IE”.

 Process Netw ork-Adaption [19-Dec-1995 17:29:23]

Trigger

Failure

Success

D
C
B
A

NONE

Process-Address-ListSwitch
4-WayRead File

(INTEGER)

M Fi le

2.8.2.21. Process Module Command -- Process Network-Adaption -- Process
Network Address List

This Module implements “FUNCTION 3.3.1: Process Address List IE”.
 __ PNA Process Address-List [19-Dec-1995 17:29:13]

Trigger

Failure

IEConstruct
IE Network-Adaption
Address-List

Address-List

Gate Write:
Address-List

Init:
Address-List

Read File
(INTEGER)

Int Do
(0,N-1)

Read File
(INTEGER)

M Address-List

M File

2.8.2.22. Process Module Command -- Process Network

This Module implements “PSPEC 3.4: Process Network IE”.

 Process Network [19-Dec-1995 17:29:36]

Trigger

Failure

Success

M File

2.8.2.23. Process Module Command -- Process Routing-Module

This Module implements “PSPEC 3.6: Process Routing-Module IE”.

 A2-122

 Process Routing-Module [19-Dec-1995 17:29:59]

Trigger

Failure

Success

D
C
B
A

NONE

Switch
4-WayRead File

(INTEGER)

Process-Route-Entry

M File

2.8.2.24. Process Module Command -- Process Routing-Module -- Process
Route Entry

This Module implements “FUNCTION 3.6.1: Process Routing Entry IE”.
 __ PRM Process Route-Entry [19-Dec-1995 17:29:48]

Trigger

Failure

IE

C
I
A

Construct
IE Routing-Module
Route-EntryRead File

(INTEGER)

Read File
(INTEGER)

Read File
(INTEGER)

M File

2.8.2.25. Process Module Command -- Process Transport-Adaption

This Module implements “PSPEC 3.2: Process Transport-Adaption IE”.
 Process Transport-Adaption [19-Dec-1995 17:30:34]

Trigger

Failure

Success

D
C
B
A

NONE

Switch
4-WayRead File

(INTEGER)

Process-Connect

Process-Disconnect

M File

2.8.2.26. Process Module Command -- Process Transport-Adaption -- Process
Connect

This Module implements “FUNCTION 3.2.1: Process Connect IE”.

 __ PTA Process Connect [19-Dec-1995 17:30:24]

Trigger

Failure

IEConstruct
IE Transport-Adaption
Connect

Read File
(INTEGER)

M File

2.8.2.27. Process Module Command -- Process Transport-Adaption -- Process
Disconnect

This Module implements “FUNCTION 3.2.2: Process Disconnect IE”.

 A2-123

 __ PTA Process Disconnect [19-Dec-1995 17:30:13]

Trigger

Failure

IEConstruct
IE Transport-Adaption
Disconnect

M File

2.8.2.28. Process Module Command -- Process Transport

This Module implements “PSPEC 3.5: Process Transport IE”.
 Process Transport [19-Dec-1995 17:31:00]

Trigger

Failure

Success

D
C
B
A

NONE

Process-ParametersSwitch
4-WayRead File

(INTEGER)

M Fi le

2.8.2.29. Process Module Command -- Process Transport -- Process
Parameters

This Module implements “FUNCTION 3.5.1: Process Setup IE”.

 __ PT Process Parameters [19-Dec-1995 17:30:51]

Trigger

Failure

IE
I Construct

IE Transport
Parameters

Read File
(INTEGER)

M File

2.8.2.30. Send Command IE

This Module implements “PSPEC 4: Construct and Send Message”.

 __ M Send Command IE [19-Dec-1995 17:25:21]

IE
TriggerA

IE
MConstruct

Msg Management
Set Ind

Write:
Management
Portal

Address

M Address

M Management Portal

2.8.3. Support Modules

2.8.3.1. Construct Msg Management Set Indication

 A2-124

 Construct Msg Management Set Ind [19-Dec-1995 17:31:17]

IE

Address

Msg OutputInsert
Parameter

Insert
Address

Create Msg
Management
Set Indication

2.8.3.2. Extract Msg Management Set Indication

 Extract Msg Management Set Ind [19-Dec-1995 17:31:28]

Msg Input

IE

Address

Msg Output
DS
F

DS
F

Select
AddressSelect

Parameter

2.8.3.3. Management IE Portal

 Management IE Portal [19-Dec-1995 17:31:37]

IE Port C

IE Port B

IE Port A

IE
A
M

IE
C
B
A

T
F

Extract
Msg Management
Set Ind

IE SwitchSwitch

Address

== ?
Portal:
Msg Management
Set Ind

P Address

M Management Portal

P IE Type A

P IE Type B

P IE Type C

 A2-125

3. Miscellaneous Modules

3.1. Statistical Parameter

3.1.1. Data Structures

3.1.1.1. Statistical Parameter

This Data Structure has no content.

3.1.1.2. Statistical Parameter Constant
Name Type Subrange Default Value
Real REAL (-Inf,+Inf) 0.0

3.1.1.3. Statistical Parameter Exponential
Name Type Subrange Default Value
Mean REAL (-Inf,+Inf) 0.0

3.1.1.4. Statistical Parameter Normal
Name Type Subrange Default Value
Mean REAL (-Inf,+Inf) 0.0
Variance REAL (-Inf,+Inf) 0.0

3.1.1.5. Statistical Parameter Poisson
Name Type Subrange Default Value
Average Event Rate REAL (-Inf,+Inf) 0.0

3.1.1.6. Statistical Parameter Uniform
 Type Subrange Default Value
Upper Bound REAL (-Inf,+Inf) 1.0
Lower Bound REAL (-Inf,+Inf) 0.0

3.1.2. Modules

3.1.2.1. Generate Statistical Parameter

 Generate Statistical Parameter [19-Dec-1995 17:21:55]

Parameter Variable

E
P
U
N
C

Generate
Poisson

Generate
Uniform

Generate
Normal

Generate
Exponential

Generate
Constant

Classify
Parameter

3.1.2.2. Generate Statistical Parameter -- Classify Parameter

 A2-126

 __ GSP Classify Parameter [19-Dec-1995 17:21:43]

Parameter

Exponential

Poisson

Uniform

Normal

Constant

T
F

T
F

T
F

T
F

T
F

Declare
Exponential

Declare
Poisson

Declare
Uniform

Declare
Normal

Declare
Constant

Type ==
Exponential?

Type
== Poisson?

Type
== Uniform?

Type
== Normal?

Type ==
Constant?

3.1.2.3. Generate Statistical Parameter -- Generate Constant

 __ GSP Generate Constant [19-Dec-1995 17:21:32]

Parameter VariableDS
FSelect

Real

3.1.2.4. Generate Statistical Parameter -- Generate Normal

 __ GSP Generate Normal [19-Dec-1995 17:21:05]

Parameter Variable
DS
FDS

F Normal
Rangen

Select
VarianceSelect

Mean

3.1.2.5. Generate Statistical Parameter -- Generate Exponential

 __ GSP Generate Exponential [19-Dec-1995 17:21:21]

Parameter VariableDS
F Expon

Rangen
Select
Mean

3.1.2.6. Generate Statistical Parameter -- Generate Poisson

 __ GSP Generate Poisson [19-Dec-1995 17:20:55]

Parameter VariableDS
F Int to

Real
Poisson
Rangen

Select Average
Event Rate

3.1.2.7. Generate Statistical Parameter -- Generate Uniform

 __ GSP Generate Uniform [19-Dec-1995 17:20:45]

Parameter
Variable

DS

F

DS

F
Uniform
Rangen

Select
Low er
Bound

Select
Upper
Bound

 A2-127

3.2. Transport - TCP Probe

3.2.1. Modules

3.2.1.1. TCP Probe

 Transport: TCP Probe [24-Dec-1995 16:42:49]

TCB Number Value

P TCP Variable

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Probes/TCP.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User INIT Below Here */
13
14 /* -- */
15 BONeS_TCP_Probe_Init (argvector);
16 /* -- */
17
18
19 /* User INIT Above Here */
20
21 ...
22
23 /* User RUN Below Here */
24
25 /* -- */
26 BONeS_TCP_Probe_Execute (TCBNumber, Value, argvector);
27 /* -- */
28
29 /* User RUN Above Here */
30

3.2.2. ‘C’ Modules

The Probe implementation uses a single ‘C’ module that interacts with the TCP
Modules.

1
2 /* -- */
3 /* Id
4 * Log
5 */
6 /* -- */
7
8 # include "/u/mgream/BONeS/Constructed/TCP/TCP.c"
9
10 /* -- */
11 /* PROBE COMPUTATION FUNCTIONS
12 |
13 | The following functions compute the necessary values from the Tcb.
14 |

 A2-128

15 */

 A2-129

93 double * value;
94 {
95 (*value) = (double) Tcb->PROBE_retx_count;

16 static int Get_Congestion_Window (Tcb, value)
17 TcbPtr Tcb;
18 double * value;
19 {
20 (*value) = (double) Tcb->snd_cwnd;
21 return 1;
22 }
23 static int Get_Slow_Start_Threshold (Tcb, value)
24 TcbPtr Tcb;
25 double * value;
26 {
27 (*value) = (double) Tcb->snd_ssthresh;
28 return 1;
29 }
30 static int Get_ReTx_Events (Tcb, value)
31 TcbPtr Tcb;
32 double * value;
33 {
34 double retx_count = Tcb->PROBE_retx_count;
35 Tcb->PROBE_retx_count = 0;
36 if (retx_count == 0)
37 return 0;
38 (*value) = (double) retx_count;
39 return 1;
40 }
41 static int Get_RTT_Average (Tcb, value)
42 TcbPtr Tcb;
43 double * value;
44 {
45 (*value) = (double) Tcb->t_srtt;
46 return 1;
47 }
48 static int Get_RTT_Variance (Tcb, value)
49 TcbPtr Tcb;
50 double * value;
51 {
52 (*value) = (double) Tcb->t_rttvar;
53 return 1;
54 }
55 static int Get_Send_Window (Tcb, value)
56 TcbPtr Tcb;
57 double * value;
58 {
59 (*value) = (double) Tcb->snd_wnd;
60 return 1;
61 }
62 static int Get_Unacknowledged_Data (Tcb, value)
63 TcbPtr Tcb;
64 double * value;
65 {
66 (*value) = (double) Tcb->snd_wnd - (Tcb->snd_nxt - Tcb->snd_una);
67 return 1;
68 }
69 static int Get_Timer_Expiries (Tcb, value)
70 TcbPtr Tcb;
71 double * value;
72 {
73 double timer_exp = Tcb->PROBE_timer_exp;
74 Tcb->PROBE_timer_exp = 0;
75 if (timer_exp == 0)
76 return 0;
77 (*value) = (double) timer_exp;
78 return 1;
79 }
80 static int Get_Ack_Received (Tcb, value)
81 TcbPtr Tcb;
82 double * value;
83 {
84 double ack_recv = Tcb->PROBE_ack_recv;
85 Tcb->PROBE_ack_recv = 0;
86 if (ack_recv = 0)
87 return 0;
88 (*value) = (double) ack_recv;
89 return 1;
90 }
91 static int Get_KB_ReTx (Tcb, value)
92 TcbPtr Tcb;

96 return 1;

 A2-130

174 static int TCPProbeTableCompute (Tcb, index, value)
175 TcbPtr Tcb;
176 int index;

97 }
98 static int Get_KB_Tx (Tcb, value)
99 TcbPtr Tcb;
100 double * value;
101 {
102 (*value) = (double) Tcb->PROBE_tx_count;
103 return 1;
104 }
105 static int Get_Reassembly_Queue_Size (Tcb, value)
106 TcbPtr Tcb;
107 double * value;
108 {
109 (*value) = QueueGetSize (Tcb->FragQueue);
110 return 1;
111 }
112
113 /* -- */
114
115 /* PROBE TABLE
116 |
117 | The Table maintains an index of all the possible data that can
118 | be captured; each of which has a particular function that does
119 | the hard work.
120 */
121
122 typedef double (*function) ();
123
124 typedef struct {
125 char * string;
126 function processor;
127 } table_entry;
128
129 # define TCPProbeTableSize 11
130
131 static table_entry TCPProbeTable[TCPProbeTableSize] =
132 {
133 { "Congestion Window", Get_Congestion_Window },
134 { "Slow Start Threshold", Get_Slow_Start_Threshold },
135 { "Retransmission Events", Get_ReTx_Events },
136 { "Round Trip Time Average", Get_RTT_Average },
137 { "Round Trip Time Variance", Get_RTT_Variance },
138 { "Send Window", Get_Send_Window },
139 { "Unacknowledged Data", Get_Unacknowledged_Data },
140 { "Timer Expiries", Get_Timer_Expiries },
141 { "Acknowledgements Received", Get_Ack_Received },
142 { "KB Retransmitted", Get_KB_ReTx },
143 { "KB Transmitted", Get_KB_Tx },
144 { "Reassembly Queue Size", Get_Reassembly_Queue_Size },
145 };
146
147 /* -- */
148
149 /* TCPProbeTableLookup
150 |
151 | Given a particular string, look for the item in the table that we
152 | require.
153 */
154 static int TCBProbeTableLookup (string)
155 char * string;
156 {
157 int index;
158 for (index = 0; index < TCPProbeTableSize; index++)
159 {
160 if (_strcasecmp (string, TCPProbeTable[index].string))
161 return index;
162 }
163 return -1;
164 }
165
166 /* -- */
167
168 /* TCPProbeTableCompute
169 |
170 | Given the TCB and the particular datum that we require, go and do
171 | the computation using the function we've got configured in the
172 | table.
173 */

177 double * value;
178 {
179 return TCPProbeTable[index].processor (Tcb, value);
180 }
181
182 /* -- */
183 /* -- */
184 /* -- */
185
186 /* BONeS_TCP_Probe_Init
187 |
188 | Given the particular type of data that we need to look at,
189 | work through the table to locate the index, and therefore
190 | the function that will eventually serve us. Make a noise
191 | if the operation fails. Also, an indication is made that
192 | this is the "first value".
193 */
194 static void BONeS_TCP_Probe_Init (argvector)
195 arg_ptr argvector;
196 {
197 char * _DataType = __GetSTRINGVal (DataType_arc);
198 int _TableIndex = TCPProbeTableLookup (_DataType);
199
200 __PutINTEGERVal (FirstValue_arc, 0);
201 __PutINTEGERVal (TableIndex_arc, _TableIndex);
202
203 if (_TableIndex < 0)
204 {
205 __ReportError (MODULE_NAMESTRING, "Can't locate this Probe");
206 }
207
208 _Bfree (_DataType);
209 }
210
211 /* -- */
212
213 /* BONeS_TCP_Probe_Execute
214 |
215 | Runtime requires that we get the item of data, and then just output
216 | it if is it not different, depending on the duplicate parameter.
217 */
218 static void BONeS_TCP_Probe_Execute (TCBNumber, ProbeOutput, argvector)
219 arc_ptr TCBNumber;
220 arc_ptr ProbeOutput;
221 arg_ptr argvector;
222 {
223 TcbPtr Tcb = TcbLookup (__GetINTEGERVal (TCBNumber));
224 int _TableIndex = __GetINTEGERVal (TableIndex_arc);
225
226 if (Tcb != NULL && _TableIndex >= 0)
227 {
228 int _Duplicate = __GetINTEGERVal (Duplicate_arc);
229 int _First_Value = __GetINTEGERVal (FirstValue_arc);
230 double _Old_Value = __GetREALVal (OldValue_arc);
231 double _New_Value;
232
233 if (TCPProbeTableCompute (Tcb, _TableIndex, &_New_Value) > 0 &&
234 (_Duplicate == 0 ||
235 _New_Value != _Old_Value ||
236 _First_Value == 0))
237 {
238 __PutINTEGERVal (ProbeOutput, _New_Value);
239
240 __PutINTEGERVal (FirstValue_arc, 1);
241 __PutINTEGERVal (OldValue_arc, _New_Value);
242 }
243
244 }
245
246 __FreeArc (TCBNumber);
247 }
248
249 /* -- */
250

 A2-131

3.2.2.1. Network - Queue Probe

3.2.3. Modules

 Network: Queue Probe [24-Dec-1995 16:42:39]

Queue Number Value

P Queue Variable

Extracts of the ‘C’ interface provided by BONeS are as follows.

1
2 /* User GLOBAL-DEFINES Below Here */
3
4 /* -- */
5 # include "/u/mgream/BONeS/Constructed/Probes/Queue.c"
6 /* -- */
7
8 /* User GLOBAL-DEFINES Above Here */
9
10 ...
11
12 /* User INIT Below Here */
13
14 /* -- */
15 BONeS_Queue_Probe_Init (argvector);
16 /* -- */
17
18 /* User INIT Above Here */
19
20 ...
21
22 /* User RUN Below Here */
23
24 /* -- */
25 BONeS_Queue_Probe_Execute (QueueNumber, Value, argvector);
26 /* -- */
27
28 /* User RUN Above Here */
29

3.2.4. ‘C’ Modules

The Probe implementation uses a single ‘C’ module that interacts with the Queue
Modules.

1
2 /* -- */
3 /* Id
4 * Log
5 */
6 /* -- */
7
8 # include "/u/mgream/BONeS/Constructed/Queue/Queue.c"
9
10 /* -- */
11
12 static int Address;
13
14 /* -- */
15 /* PROBE COMPUTATION FUNCTIONS
16 |
17 | The following functions compute the necessary values from the Queue.
18 |
19 */

 A2-132

20 static int Get_Size (QEntry, value)

 A2-133

98 return index;
99 }
100 return -1;

21 QueueEntry * QEntry;
22 double * value;
23 {
24 (*value) = QueueSize (QEntry);
25 return 1;
26 }
27 static int Get_SrcAddressSize (QEntry, value)
28 QueueEntry * QEntry;
29 double * value;
30 {
31 int index;
32 int size = QueueSize (QEntry->Que);
33
34 (*value) = 0;
35 for (index = 0; index < size; index++)
36 {
37 if (_Get_Src_Address (QueuePeekElement (QEntry->Que, index)) == Address)
38 (*value)++;
39 }
40
41 return 1;
42 }
43 static int Get_Size (QEntry, value)
44 QueueEntry * QEntry;
45 double * value;
46 {
47 int index;
48 int size = QueueSize (QEntry->Que);
49
50 (*value) = 0;
51 for (index = 0; index < size; index++)
52 {
53 if (_Get_Dst_Address (QueuePeekElement (QEntry->Que, index)) == Address)
54 (*value)++;
55 }
56
57 return 1;
58 }
59 /* -- */
60
61 /* PROBE TABLE
62 |
63 | The Table maintains an index of all the possible data that can
64 | be captured; each of which has a particular function that does
65 | the hard work.
66 */
67
68 typedef double (*function) ();
69
70 typedef struct {
71 char * string;
72 function processor;
73 } table_entry;
74
75 # define QueueProbeTableSize 3
76
77 static table_entry QueueProbeTable[QueueProbeTableSize] =
78 {
79 { "Size", Get_Size },
80 { "Source Address Count", Get_SrcAddressSize },
81 { "Dest Address Count", Get_DstAddressSize },
82 };
83
84 /* -- */
85
86 /* QueueProbeTableLookup
87 |
88 | Given a particular string, look for the item in the table that we
89 | require.
90 */
91 static int QueueProbeTableLookup (string)
92 char * string;
93 {
94 int index;
95 for (index = 0; index < QueueProbeTableSize; index++)
96 {
97 if (_strcasecmp (string, QueueProbeTable[index].string))

101 }

 A2-134

179 {
180 __PutINTEGERVal (ProbeOutput, _New_Value);
181 __PutINTEGERVal (FirstValue_arc, 1);

102
103 /* -- */
104
105 /* QueueProbeTableCompute
106 |
107 | Given the Queue and the particular datum that we require, go and do
108 | the computation using the function we've got configured in the
109 | table.
110 */
111 static int QueueProbeTableCompute (QEntry, index, address. value)
112 QueueEntry * QEntry;
113 int index;
114 int address,
115 double * value;
116 {
117 Address = address;
118 return QueueProbeTable[index].processor (QEntry, value);
119 }
120
121 /* -- */
122 /* -- */
123 /* -- */
124
125 /* BONeS_Queue_Probe_Init
126 |
127 | Given the particular type of data that we need to look at,
128 | work through the table to locate the index, and therefore
129 | the function that will eventually serve us. Make a noise
130 | if the operation fails. Also, an indication is made that
131 | this is the "first value".
132 */
133 static void BONeS_Queue_Probe_Init (argvector)
134 arg_ptr argvector;
135 {
136 char * _DataType = __GetSTRINGVal (DataType_arc);
137 int _TableIndex = QueueProbeTableLookup (_DataType);
138
139 __PutINTEGERVal (FirstValue_arc, 0);
140 __PutINTEGERVal (TableIndex_arc, _TableIndex);
141
142 if (_TableIndex < 0)
143 {
144 __ReportError (MODULE_NAMESTRING, "Can't locate this Probe");
145 }
146
147 _Bfree (_DataType);
148 }
149
150 /* -- */
151
152 /* BONeS_Queue_Probe_Execute
153 |
154 | Runtime requires that we get the item of data, and then just output
155 | it if is it not different, depending on the duplicate parameter.
156 */
157 static void BONeS_Queue_Probe_Execute (QueueNumber, ProbeOutput, argvector)
158 arc_ptr QueueNumber;
159 arc_ptr ProbeOutput;
160 arg_ptr argvector;
161 {
162 int QIndex = __GetINTEGERVal (QueueNumber);
163 QueueEntry * QEntry = &QueueTable[QIndex];
164 int _TableIndex = __GetINTEGERVal (TableIndex_arc);
165
166 if (QueueEntry != NULL && QIndex >= 0)
167 {
168 int _Address = __GetINTEGERVal (Address_arc);
169 int _Duplicate = __GetINTEGERVal (Duplicate_arc);
170 int _First_Value = __GetINTEGERVal (FirstValue_arc);
171 double _Old_Value = __GetREALVal (OldValue_arc);
172 double _New_Value;
173
174 if (QueueProbeTableCompute
175 (QEntry, _TableIndex, _Address, &_New_Value) > 0 &&
176 (_Duplicate == 0 ||
177 _New_Value != _Old_Value ||
178 _First_Value == 0))

182 __PutINTEGERVal (OldValue_arc, _New_Value);
183 }
184
185 }
186
187 __FreeArc (QueueNumber);
188 }
189
190 /* -- */
191

 A2-135

3.3. Common

3.3.1. Data Structures

3.3.1.1. IE Primitive

This Data Structure has no content.

3.3.1.2. Msg Primitive
Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

3.3.1.3. Msg Application Primitive
Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

3.3.1.4. Msg Application Data

This Message is intended to convey an arbitrary item of data, which is modelled by a
Length.
Name Type Subrange Default Value
Length INTEGER [0,+Inf) 0
Creation Time REAL (-Inf,+Inf) 0.0

3.3.1.5. Boolean

The use of a Boolean True and False is common to the extent that a data type is
defined for it; as opposed to using a less consistent integer type.
Value
True
False

3.3.2. Modules

3.3.2.1. Boolean ==

A natural operation associated with a Data Structure of this pervasiveness is that of
equality evaluation. This Module attempts to evaluate such equality.

 Boolean == ? [19-Dec-1995 17:18:55]

DS

F

T

S

T
F

S== Boolean

Sw itch

Sconst
Boolean

P Constant Set Value

 A2-136

3.3.2.2. Create Msg Application Data

 Create Msg Application Data [19-Dec-1995 17:19:06]

Data-Length Msg

TNow

Insert
Creation
Time

Insert
Length

Create Msg
Application
Data

3.3.2.3. Extract Msg Application Data

 Extract Msg Application Data [19-Dec-1995 17:19:17]

Msg

Msg-Out

Data-Length

Creation-Time

DS
F

DS

F

Select
Length

Select
Creation
Time

3.3.2.4. IE Switch

There are a number of places in which Information Elements are switched upon;
rather than duplicate the modules required for this operation, this single Module
provides the required functionality of directing an input Information Element to an
appropriate output.

 IE Switch [19-Dec-1995 17:19:53]

IE Input

IE Ouput C

IE Ouput B

IE Ouput A

T
F

T
F

T
F

Type
== C?

Type
== B?

Type
== A?

P IE Type A

P IE Type B

P IE Type C

3.3.2.5. Msg Switch

There are a number of places in which Messages are switched upon; rather than
duplicate the modules required for this operation, this single Module provides the
required functionality of directing an input Message to an appropriate output.

 A2-137

 Msg Switch [19-Dec-1995 17:20:02]

Msg Input

Msg Ouput D

Msg Ouput C

Msg Ouput B

Msg Ouput A

T
F

T
F

T
F

T
F

Type
== D?

Type
== C?

Type
== B?

Type
== A?

P Msg Type A

P Msg Type B

P Msg Type C

P Msg Type D

3.3.2.6. Switch 8-Way Mem

There are a couple of places where an 8 way switch is needed. A switch of this
magnitude is not in the BONeS library; therefore it has been created.

 Switch 8 Way Mem [19-Dec-1995 17:20:22]

Input

Ouput-H

Ouput-G

Ouput-F

Ouput-E

Ouput-D

Ouput-C

Ouput-B

Ouput-A

D
C
B
A

NONE

D
C
B
A

NONE

Number

Number

Sw itch
4-Way

Sw itch
4-Way

M Number

3.3.2.7. Type == Switch

Switching on types is a common enough operation that it is implemented as a single
module.

 A2-138

 Type == Switch [19-Dec-1995 17:20:33]

Input

False

True
T
FSw itch

TYPE
Const

Type
Of

T==

P TYPE to generate

 A2-139

APPENDIX 3. THESIS 1 REPORT

 A3-1

	Preface
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Background, Approach and Scope of Work
	Background
	Congestion Avoidance and Control
	Transmission Control Protocol (TCP)
	Congestion Avoidance and Control in TCP
	Modelling and Simulations
	Block Oriented Network Simulator (BONeS)
	Wide-Area Networks

	Investigation Concerns and Objectives
	Thesis 1 Activity
	Thesis 2 Activity (including problems with BONeS Software)

	Part 1. Development of the Simulation Environment
	Introduction
	Design
	Strategies
	Architecture
	Primary Modules
	Datalink Layer
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes

	Network Layer
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes

	Transport Layer
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes

	Network-Adaption Layer
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes

	Transport-Adaption Layer
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes

	Routing-Module
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes

	Generator
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes
	The TCB Library

	Management
	Overview
	External Interface
	Relationships
	Parameters
	Behaviour
	Data Accessors
	Dependencies
	Initialisation

	Internal Design
	Approach
	Data Flow Diagrams and Process Specifications

	Additional notes

	Miscellaneous Modules
	Statistical Parameter
	Data Structure
	Functions

	Probe - Transport Layer TCP
	Overview
	External Interface
	Parameters
	Behaviour

	Internal Design
	Additional notes

	Probe - Network Layer Queue
	Overview
	External Interface
	Parameters
	Behaviour

	Internal Design
	Additional notes

	Components
	Simulation
	Network Components

	Implementation
	Strategies
	Architecture
	Module Organisation
	Data Structure Organisation

	Modules
	Primary Modules
	Datalink Layer
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Network Layer
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Transport Layer
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Network-Adaption Layer
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Transport-Adaption Layer
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Routing-Module
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Generator
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Management
	Overview
	Ports
	Parameters
	Data Structures
	Modules

	Miscellaneous Modules
	Statistical Parameter
	Overview
	Data Structures
	Modules

	Transport Layer TCP Probe
	Overview
	Ports
	Parameters
	Modules

	Network Layer Queue Probe
	Overview
	Ports
	Parameters
	Modules

	Common
	Overview

	Components
	Host
	Traffic
	Link
	Router
	LAN
	LAN -- Traffic
	Simulation Management

	Usage Notes
	Management File Format
	Datalink Layer -- Set State
	Transport Layer -- Set Parameters
	Network-Adaption Layer -- Set Address List
	Transport-Adaption Layer -- Connect Session
	Transport-Adaption Layer -- Disconnect Session
	Generator -- Setup FTP Generator
	Generator -- Setup Telnet Generator
	Generator -- Setup Statistical Generator
	Statistical Parameter Encoding -- Constant
	Statistical Parameter Encoding -- Uniform
	Statistical Parameter Encoding -- Normal
	Statistical Parameter Encoding -- Exponential
	Statistical Parameter Encoding -- Poisson

	Routing-Module -- Set Route Entry

	Management File Example

	Testing
	Overview
	Summary
	Datalink Layer
	Network Layer
	Transport Layer
	Network-Adaption Layer
	Transport-Adaption Layer
	Routing-Module
	Generator
	Management

	Part 2. Construction, Execution and Analysis of Simulations
	Introduction
	Simulation Strategies
	Simulation Scenarios
	Single TCP Conversation
	Problem and Objectives
	Discussion and Related Work (NOT FINISHED)
	Approach
	BONeS Simulation Design
	Topology
	Post Processing and Probe Placement
	Basic Simulation
	Queue Length Iteration

	Execution: Basic Simulation
	Parameters
	Management Script

	Execution: Queue Length Iteration Simulation

	Expectations (NOT FINISHED)
	Execution of Simulation
	Analysis of Results
	Conclusions (NOT FINISHED)

	Multiple TCP Conversations through bottleneck WAN Router
	Problem and Objectives
	Discussion and Related Work (NOT FINISHED)
	Approach
	BONeS Simulation Design
	Topology
	Post Processing and Probe Placement
	Basic Simulation
	RTT Iteration
	Traffic Level Iteration

	Execution: Basic Simulation
	Parameters
	Management Script

	Execution: RTT Iteration Simulation
	Execution: Traffic Level Iteration Simulation

	Expectations (NOT FINISHED)
	Execution of Simulation
	Analysis of Results
	Conclusions (NOT FINISHED)

	Single TCP Conversation in Multiple-Path, Dynamically Routed WAN
	Problem and Objectives
	Discussion and Related Work (NOT FINISHED)
	Approach
	BONeS Simulation Design
	Topology
	Post Processing and Probe Placement (NOT FINISHED)
	Basic Simulation
	Queue Length Iteration
	Traffic Level Iteration

	Execution: Basic Simulation
	Parameters
	Management Script

	Execution: Queue Length Iteration Simulation
	Execution: Traffic Level Iteration Simulation

	Expectations (NOT FINISHED)
	Execution of Simulation
	Analysis of Results
	Conclusions (NOT FINISHED)

	Multiple TCP conversations overloading long-haul WAN Link
	Problem and Objectives
	Discussion and Related Work (NOT FINISHED)
	Approach
	BONeS Simulation Design
	Topology
	Post Processing and Probe Placement
	Basic Simulation
	Queue Length Iteration
	WAN Bandwidth Iteration

	Execution: Basic Simulation
	Parameters
	Management Script

	Execution: Queue Length Iteration Simulation
	Execution: WAN Link Bandwidth Iteration Simulation

	Expectations (NOT FINISHED)
	Execution of Simulation
	Analysis of Results
	Conclusions (NOT FINISHED)

	Fluctuating traffic on TCP conversations through bottleneck long -haul WAN Link
	Problem and Objectives
	Approach
	BONeS Simulation Design
	Topology and Parameter Values
	Runtime Management Script
	Probes and Post Processing
	Execution

	Expectations
	Execution of Simulation
	Analysis of Results
	Conclusions

	Conclusions
	Future Directions
	References
	Appendix 1. Detailed BONeS Design
	Data Structures
	Messages
	Information Elements
	Miscellaneous

	Primary Modules
	Datalink Layer
	Network Layer
	Transport Layer
	Network-Adaption Layer
	Transport-Adaption Layer
	Routing-Module
	Generator
	Management

	Miscellaneous Modules
	Statistical Parameter
	Transport Layer -- TCP Probe
	Network Layer -- Queue Probe

	Appendix 2. Detailed BONeS Implementation
	Overview
	Primary Modules
	Datalink Layer
	Data Structures
	IE Datalink Primitive
	IE Datalink Flow Control
	IE Datalink State
	Msg Datalink Primitive
	Msg Datalink Connect Primitive
	Msg Datalink Connect Indication
	Msg Datalink Data Primitive
	Msg Datalink Data Indication
	Msg Datalink Data Request
	Msg Datalink Disconnect Primitive
	Msg Datalink Disconnect Indication
	Msg Datalink Status Primitive
	Msg Datalink Status Indication

	Main Modules
	Initialisation
	Transmission Channel
	Transmission Channel -- Validate Input
	Transmission Channel -- Transmission Delay
	Transmission Channel -- Transmission Delay -- Delay Bandwidth
	Transmission Channel -- Transmission Delay -- Delay Propagation Delay
	Transmission Channel -- Indicate Flow Control Released
	Management

	Support Modules
	Construct IE Datalink Flow Control
	Construct IE Datalink State
	Extract IE Datalink Flow Control
	Extract IE Datalink State
	Construct Msg Datalink Connect Indication
	Construct Msg Datalink Data Request
	Construct Msg Datalink Disconnect Indication
	Construct Msg Datalink Status Indication
	Convert Msg Datalink Data Request to Indication
	Extract Msg Datalink Data
	Extract Msg Datalink Status

	Network Layer
	Data Structures
	IE Network Primitive
	IE Network Load-Factor
	Msg Network Primitive
	Msg Network Connect Primitive
	Msg Network Connect Indication
	Msg Network Data Primitive
	Msg Network Data Indication
	Msg Network Data Request
	Msg Network Disconnect Primitive
	Msg Network Disconnect Indication
	Msg Network Status Primitive
	Msg Network Status Indication

	Main Modules
	Process Data Indication
	Process Connect Indication
	Process Disconnect Indication
	Process Status Indication
	Process Data Output
	Process Load Update
	Process Reject
	Process Outgoing
	Process Outgoing -- Process Up
	Process Outgoing -- Process Down
	Process Outgoing -- Process Release
	Process Outgoing -- Process Insert
	Process Outgoing -- Indicate Load
	Queue Extract
	Queue Get Length
	Queue Get Size
	Queue Insert
	Queue Reset
	Queue Init

	Support Modules
	Construct IE Network Load Factor
	Extract IE Network Load Factor
	Construct Msg Network Connect Indication
	Construct Msg Network Disconnect Indication
	Construct Msg Network Status Indication
	Construct Msg Network Data Request
	Convert Msg Network Data Indication to Request
	Convert Msg Network Data Request to Indication
	Extract Msg Network Data
	Extract Msg Network Status
	Get Msg Network Data Field : Destination Address
	Get Msg Network Data Field : Hop Count
	Set Msg Network Data Field : Hop Count

	‘C’ Modules
	BONeS Queue Create (Init)
	BONeS Queue Destroy (Init)
	BONeS Queue Extract
	BONeS Queue Insert
	BONeS Queue Get Length
	BONeS Queue Get Size
	BONeS Queue Reset
	BONeS Queue (Primitive)
	Primitives
	Table

	Transport Layer
	Data Structures
	IE Transport Primitive
	IE Transport Parameters
	Msg Transport Primitive
	Msg Transport Connect Primitive
	Msg Transport Connect Request
	Msg Transport Data Primitive
	Msg Transport Data Indication
	Msg Transport Data Request
	Msg Transport Disconnect Primitive
	Msg Transport Disconnect Request
	Msg Transport TCP

	Main Modules
	Connection Manager
	Connection Manager -- Process Network Connect
	Connection Manager -- Process Network Disconnect
	Connection Manager -- Process Network Status
	Connection Manager -- Process Transport Connect
	Connection Manager -- Process Transport Disconnect
	Management
	Management -- Process Parameters
	TCP Established Processing
	TCP Established Processing -- Buffer Processing
	TCP Established Processing -- TCP Start
	TCP Established Processing -- TCP Stop
	TCP Established Processing -- TCP Timer
	TCP Established Processing -- TCP Output
	TCP Established Processing -- TCP Input
	TCP Established Processing -- TCP Quench
	TCP Established Processing -- Extract Msg Vector
	TCP Input
	TCP Output
	TCP Quench
	TCP Start
	TCP Stop
	TCP Timer
	Transport Interface
	Network Interface

	Support Modules
	Construct IE Transport Parameters
	Extract IE Trasnport Parameters
	Construct Msg Transport Connect Request
	Construct Msg Transport Data Indication
	Construct Msg Transport Data Request
	Construct Msg Transport Disconnect Request
	Construct Msg Transport TCP
	Extract IE Transport Parameters
	Extract Msg Transport Connect Request
	Extract Msg Transport Data

	‘C’ Modules
	BONeS Interface
	BONeS TCP Start
	BONeS TCP Stop
	BONeS TCP Input
	BONeS TCP Output
	BONeS TCP Quench
	BONeS TCP Timer
	BONeS TCP (Primitive)
	Data
	TCB
	Init
	Message
	Outgoing Queue
	Fragment
	Input
	Output
	Quench
	Timer

	Network-Adaption Layer
	Data Structures
	IE Network-Adaption Primitive
	IE Network-Adaption Address List

	Main Modules
	Management
	Management -- Process Address List
	Process Network Input
	Process Network Input -- Process Connect
	Process Network Input -- Process Disconnect
	Process Network Input -- Process Status
	Process Network Input -- Process Data
	Process Network Output

	Support Modules
	Construct IE Network-Adaption Address List
	Extract IE Network-Adaption Address List

	Transport-Adaption Layer
	Data Structures
	IE Transport-Adapation Primitive
	IE Transport-Adaption Connect
	IE Transport-Adaption Disconnect

	Main Modules
	Management
	Management -- Process Connect
	Management -- Process Disconnect
	Process Transport Input
	Process Transport Output

	Support Modules
	Create IE Transport-Adapation Connect
	Create IE Transport-Adaption Disconnect
	Extract IE Transport-Adaption Connect
	Extract IE Transport-Adaption Disconnect

	Routing-Module
	Data Structures
	IE Routing-Module Primitive
	IE Routing-Module Route-Entry

	Main Modules
	Routing Switch
	Routing Switch -- Verify Input Message
	Routing Switch -- Compute Next Hop
	Routing Switch -- Compute Next Hop -- Compute Route Cost
	Management
	Management -- Process Route Entry
	Network Interface
	Network Interface -- Process Connect Indication
	Network Interface -- Process Disconnect Indication
	Network Interface -- Process Status Indication
	Network Interface -- Process Data Indication Input
	Network Interface -- Process Data Indication Output
	Get Interface Availability Status
	Get Interface Count
	Get Interface Load Status
	Get Routing Table Entry
	Set Interface Availability Status
	Set Interface Load Status
	Set Invalid Routing Table Entry
	Set Valid Routing Table Entry

	Support Modules
	Construct IE Routing-Module Route Entry
	Extract IE Routing-Module Route Entry

	Generator
	Data Structures
	IE Generator Primitive
	IE Generator Setup-Primitive
	IE Generator Setup-FTP
	IE Generator Setup-Statistical
	IE Generator Setup-Telnet
	IE Generator Stop

	Main Modules
	Process Cancel
	Process Setup
	Process Setup -- Process Filter Setup
	Process Setup -- Process Telnet
	Process Setup -- Process FTP
	Process Setup -- Process Statistical
	Process Setup -- Filter Output
	Process Setup -- Filter Output -- Validate Max Bytes
	Process Setup -- Filter Output -- Validate Max Elements
	Process Setup -- Filter Output -- Validate Max Time
	Get TCPLIB Integer Quantity
	Get TCPLIB Real Quantity

	Support Modules
	Construct IE Generator Setup FTP
	Construct IE Generator Setup Statistical
	Construct IE Generator Setup Telnet
	Construct IE Generator Stop
	Extract IE Generator Setup Primitive
	Extract IE Generator Setup Statistical

	‘C’ Modules
	TCP Library

	Management
	Data Structures
	Msg Management Primitive
	Msg Management Set Primitive
	Msg Management Set Indication

	Main Modules
	Initialise
	Read Time and Wait
	Process Addressing Information
	Process Module Command
	Process Module Command -- Process Datalink
	Process Module Command -- Process Datalink -- Process State
	Process Module Command -- Process Generator
	Process Module Command -- Process Generator -- Process Stop
	Process Module Command -- Process Generator -- Process Startup
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Statistical
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Statistical -- Extract Statistical Parameter
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Statistical -- Extract Statistical Parameter Constant
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Statistical -- Extract Statistical Parameter Exponential
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Statistical -- Extract Statistical Parameter Normal
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Statistical -- Extract Statistical Parameter Poisson
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Statistical -- Extract Statistical Parameter Uniform
	Process Module Command -- Process Generator -- Process Startup -- Process Startup FTP
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Telnet
	Process Module Command -- Process Generator -- Process Startup -- Process Startup Type
	Process Module Command -- Process Network-Adaption
	Process Module Command -- Process Network-Adaption -- Process Network Address List
	Process Module Command -- Process Network
	Process Module Command -- Process Routing-Module
	Process Module Command -- Process Routing-Module -- Process Route Entry
	Process Module Command -- Process Transport-Adaption
	Process Module Command -- Process Transport-Adaption -- Process Connect
	Process Module Command -- Process Transport-Adaption -- Process Disconnect
	Process Module Command -- Process Transport
	Process Module Command -- Process Transport -- Process Parameters
	Send Command IE

	Support Modules
	Construct Msg Management Set Indication
	Extract Msg Management Set Indication
	Management IE Portal

	Miscellaneous Modules
	Statistical Parameter
	Data Structures
	Statistical Parameter
	Statistical Parameter Constant
	Statistical Parameter Exponential
	Statistical Parameter Normal
	Statistical Parameter Poisson
	Statistical Parameter Uniform

	Modules
	Generate Statistical Parameter
	Generate Statistical Parameter -- Classify Parameter
	Generate Statistical Parameter -- Generate Constant
	Generate Statistical Parameter -- Generate Normal
	Generate Statistical Parameter -- Generate Exponential
	Generate Statistical Parameter -- Generate Poisson
	Generate Statistical Parameter -- Generate Uniform

	Transport - TCP Probe
	Modules
	TCP Probe

	‘C’ Modules
	Network - Queue Probe

	Modules
	‘C’ Modules

	Common
	Data Structures
	IE Primitive
	Msg Primitive
	Msg Application Primitive
	Msg Application Data
	Boolean

	Modules
	Boolean ==
	Create Msg Application Data
	Extract Msg Application Data
	IE Switch
	Msg Switch
	Switch 8-Way Mem
	Type == Switch

	Appendix 3. Thesis 1 Report

