

A brief note on the reverse engineering of protected
computer programs from a UK perspective

Matthew Gream <matthew.gream@pobox.com>
February 2003

Copyright 2003 Matthew Gream. All rights reserved.
This work may only be reproduced, transmitted or used, other than where
allowed by applicable law, in an unaltered form, with this notice intact, for
non-commercial purposes. While all efforts are made to ensure correctness,
this work may contain inaccuracies: use this work at your own risk.
This document can be obtained from:
http://matthewgream.net/content/note_decompile-comp-prog-2003.doc

Scope and purpose
This is a brief note about legal and technical perspectives of reverse
engineering of protected computer programs under UK law.
It is intended to be brief and sweeping, yet provide various references for
further investigation.

Legal perspective
The right to reverse engineer a protected computer program is available by
way of the following legislation:

• International law: Article 9 of the WTO TRIPS Agreement, which
specifies that copyright protection shall extend to expressions and not
ideas. Article 2 and Article 4 of the WIPO Copyright Treaty, which
specifies that copyright shall extend to expressions and not ideas.

• Community law: Article 5 of the Council Directive 91/250/EEC of 14
May 1991 on the legal protection of computer programs (as amended),
which allows a person to “observe, study or test the functioning of the
program in order to determine the ideas and principles which underlie
any element of the program”. Article 6 of the Council Directive
91/250/EEC of 14 May 1991 on the legal protection of computer
programs (as amended), which allows the specific act of Decompilation
for the purpose of creating interoperability.

• National law: Section 296A of the Copyright, Designs and Patents Act
1988 (as amended), which implements Article 5 of EEC Directive
91/250. Section 50B of the Copyright, Designs and Patents Act 1988
(as amended), which implements Article 6 of EEC Directive 91/250.

mailto:matthew.gream@pobox.com
http://matthewgream.net/content/note_decompile-comp-prog-2003.doc
http://www.wto.org/english/docs_e/legal_e/27-trips_04_e.htm
http://www.wipo.int/clea/docs/en/wo/wo033en.htm
http://europa.eu.int/eur-lex/en/consleg/main/1991/en_1991L0250_index.html
http://europa.eu.int/eur-lex/en/consleg/main/1991/en_1991L0250_index.html
http://europa.eu.int/eur-lex/en/consleg/main/1991/en_1991L0250_index.html
http://europa.eu.int/eur-lex/en/consleg/main/1991/en_1991L0250_index.html
http://europa.eu.int/eur-lex/en/consleg/main/1991/en_1991L0250_index.html
http://www.jenkins-ip.com/patlaw/cdpa7.htm
http://www.jenkins-ip.com/patlaw/cdpa7.htm
http://www.jenkins-ip.com/patlaw/cdpa1.htm
http://www.jenkins-ip.com/patlaw/cdpa1.htm

There are three significant reasons for allowing a right to reverse engineer,
and these are:

• For interoperability: to allow fair competition and prevent “derogation
from grant” (e.g. competitive products, “spare parts and repair”). This is
only available where there are no existing provisions for interoperability
(i.e. the owner of the work has not published interfacing details). This is
provided for in EU/UK legislation (EEC Dir 91/250 Art. 6 & UK CDPA
s50B) and case law, but under very specific conditions.

• To preserve the idea/expression dichotomy: by ensuring that
copyright in the computer program does not restrict any other property
rights that may exist (e.g. patented algorithms, utility models,
embedded works by third parties). This is implicitly required by
signatories to the TRIPS agreement, and codified in EU/UK legislation
(EEC Dir 91/250 Art. 5 & UK CDPA s296A).

• To achieve performance of objective: when decompilation is a
necessary part of utilising the work according to the express/implied
terms of the license. This would be rare, as few computer programs
would require decompilation as a necessary part of use. This is an
established legal principle in many legal systems.

For a very good legal overview of reverse engineering, which includes
international aspects, refer to REVERSE ENGINEERING &
DECOMPILATION OF COMPUTER PROGRAMS (The legitimate boundaries
of Copyright Protection) by Aziz ur Rehman, Hafiz.
Other resources include Reverse Engineering Clauses in Current Shrinkwrap
and Clickwrap Contracts, THE LAW & ECONOMICS OF REVERSE
ENGINEERING, and REVERSE ENGINEERING UNDER SIEGE.

Technical perspective
There are numerous resources focused on reverse engineering of computer
programs from a technical perspective, such as:

• Tools for decompilation (e.g. dcc, Mocha, Anakrino, Perl).

• Commercial services (e.g. MicroAPL, Springstone Software).

• Publications on decompilation techniques (e.g. Win32, Unix).

• Academic conferences and workshops (e.g. WCRE2001).

• Collections of resources (e.g. Softpanorama, Reverse Engineering,
Program-Transformation.Org, Open Directory, searchVB).

• Discussion forums and communities (e.g. Decompiler.com).

• Protection against decompilation (e.g. Dotfuscator, Robust
Obfuscation).

In terms of the various ways that a computer program is amenable to reverse
engineering, these are a few salient points:

http://www.indlaw.com/publicdata/Articles/4_6_2001_2_57_29_PM_Indlaw/article.pdf
http://www.indlaw.com/publicdata/Articles/4_6_2001_2_57_29_PM_Indlaw/article.pdf
http://www.indlaw.com/publicdata/Articles/4_6_2001_2_57_29_PM_Indlaw/article.pdf
http://www.cptech.org/ecom/ucita/licenses/reverse.html
http://www.cptech.org/ecom/ucita/licenses/reverse.html
http://www.sims.berkeley.edu/~pam/papers/l&e reveng5.pdf
http://www.sims.berkeley.edu/~pam/papers/l&e reveng5.pdf
http://www.sims.berkeley.edu/~pam/papers/CACM on Bunner.pdf
http://www.itee.uq.edu.au/~cristina/dcc.html
http://www.brouhaha.com/~eric/computers/mocha.html
http://www.saurik.com/net/exemplar/
http://www.securityfocus.com/archive/1/312757
http://www.microapl.co.uk/
http://www.springstone.co.uk/
http://www.lsd-pl.net/documents/winasm-1.0.1.pdf
http://www.lsd-pl.net/documents/asmcodes-1.0.2.pdf
http://mailhost.uni-koblenz.de/pipermail/reengineering/2001/000043.html
http://www.softpanorama.org/Algorithms/decompilation.shtml
http://www.backerstreet.com/cg/work.htm
http://www.program-transformation.org/twiki/bin/view/Transform/DeCompilation
http://dmoz.org/Computers/Programming/Disassemblers/
http://searchvb.techtarget.com/sDefinition/0,,sid8_gci804135,00.html
http://www.decompiler.com/
http://www.preemptive.com/index.html
http://www.cs.arizona.edu/~collberg/Research/Obfuscation/
http://www.cs.arizona.edu/~collberg/Research/Obfuscation/

1. The binary components that form part of a computer program are often
in structured formats. An executable file format (e.g. Executable File
Formats) often has separate code and non-code segments, and there
can be multiple segments, which can aid reverse engineering by
indicating higher-level boundaries and arrangements.

2. The executable (or non-executable) components may contain
debugging information, such as program symbols (e.g. Release mode
debugging with VC++). Typically these are used only for internal
development, and not for production releases. But if they are present,
then they can provide significant information about the structure of the
source code and its relationship to the object code.

3. The compiler that converts source code to object code is deterministic
and structured, so making reverse inferences is not difficult, however
production releases are typically “optimised” which does cause
obfuscation. Source code is very structured, and that structure
translates strongly to object code, however any particular translation is
a function of the particular compiler, its settings, and its environment
(while remaining deterministic).

4. Single, or related, modules or libraries, are typically linked into a final
executable image, and as software is typically “modularised”, then all of
the functionality for a particular purpose (e.g. a set of modules for an
interoperable interface) are often located within single contiguous area
of the image. This means that analysis can be scoped to a small part of
an otherwise large computer program.

5. During execution of a computer program, the execution path will “jump”
to other routines within the image as it reuses code from other parts of
the program: it is possible to locate these transfers of control and
detect the way that arguments are passed, and this may help extract
“interface functions”.

6. Computer programs typically rely upon operating system primitives, or
platform libraries, such as for file services or string and time
processing. These are highly distinguishable transfers of control in
execution and can be detected using third party tools (e.g. Unix truss),
utilities supplied by the operating system, or the vendor’s development
suites.

7. Computer programs are sometimes released as one single executable
image, or a number of libraries that collaborate together: these libraries
often export well-defined modular interfaces, which include symbolic
naming information (e.g. DLL symbols).

8. Interoperable protocols (such as RPC, CORBA and XML-RPC) are
often implemented using third-party libraries (e.g. omniORB) (making it
possible to analyse the way a computer program uses those libraries
as mentioned above) and/or involve the generation of “custom code”
(which is typically highly structured, and results in predictable and
understandable object code more amenable to reverse engineering).

9. Interoperable protocols are often standardised and involve data
communication protocols that can be observed and used as part of the

http://www.nondot.org/sabre/os/articles/ExecutableFileFormats/
http://www.nondot.org/sabre/os/articles/ExecutableFileFormats/
http://www.cygnus-software.com/papers/release_debugging.html
http://www.cygnus-software.com/papers/release_debugging.html
http://www.pugcentral.org/howto/truss.htm
http://www.jorgon.freeserve.co.uk/GobugHelp/Symbols.htm
http://www.onc-rpc-xdr.com/
http://www.cs.indiana.edu/~kksiazek/tuto.html
http://www.xmlrpc.com/
http://omniorb.sourceforge.net/

reverse engineering process. There are numerous protocol analysers
available for the purpose, including “open source” (e.g. Ethereal).

10. Decompilation and reverse engineering occurs on a regular basis in the
community, especially in the field of computer security (e.g. BugTraq).

11. Some languages (e.g. Java, Python or Perl) compile from source code
to an intermediate format or ‘bytecode’ that has greater structure and
less complexity than native platform assembly language. This can
make decompilation easier (e.g. perl2exe). This is a very significant
concern for Java (e.g. Advice on protection, Obfuscation techniques).

http://www.ethereal.com/
http://www.securityfocus.com/archive/1
http://java.sun.com/
http://www.python.org/
http://www.perl.com/
http://www.securityfocus.com/archive/1/312757
http://www.javaworld.com/javaworld/javatips/jw-javatip22.html
http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow/obfuscation.html

	A brief note on the reverse engineering of protected computer programs from a UK perspective
	Scope and purpose
	Legal perspective
	Technical perspective

